Friday, 26 October 2018
Saturday, 20 October 2018
২০-১০-২০১৮ এখন স্টক মার্কেট হবে আপনার হাতের মুঠোয় - বিশ্বাস হচ্ছে না ? একবার বিশ্বাস করেই দেখেন
এখন স্টক মার্কেট হবে আপনার হাতের মুঠোয় - বিশ্বাস হচ্ছে না ? একবার বিশ্বাস করেই দেখেন
আমাদের স্টক মার্কেটে লিস্টেড কোম্পানির দিন কে দিন বেরেই চলছে , তাই সকল শেয়ারের খোজ খবর নেওয়ার সুযোগ আস্তে আস্তে কষ্টকর হতে শুরু করেছে, আর তাই যদি এমন হয় যে আপনি সব কিছুর ই ভাল কিছু হাতের নাগালে পেতেন তাহলে মন্দ হত না , বিশেষ করে আপনার তখন হাতে গোনা কয়েকটা শেয়ারের মুভমেন্ট , মার্কেট নিউজ, সাপোর্ট , রেজিস্টেন্স , আরএসআই , এমএফআই ইত্যাদি বিবেচনায় রাখলেই আপনি আপনার বিজনেস অনেক সহজ করে নিতে পারবেন।
Market Pulse যেখানে আপনি জানতে পারবেন যে সকল শেয়ার নতুন করে যাত্রা শুরু করতে চাইছে।
মার্কেট লিডিং স্টক সমূহের জনপ্রিয় টেকনিক্যাল ইনডিকেটর এর অবস্থান ।
Pivot Table only Opportunity Stock
Evaluation of Weekly Market
NB: উপরের লিঙ্ক গুলিতে ল্কিক করলে বিস্তারিত জানতে ও দেখতে পারবেন , পিডিএফ ফাইলে।
আমাদের স্টক মার্কেটে লিস্টেড কোম্পানির দিন কে দিন বেরেই চলছে , তাই সকল শেয়ারের খোজ খবর নেওয়ার সুযোগ আস্তে আস্তে কষ্টকর হতে শুরু করেছে, আর তাই যদি এমন হয় যে আপনি সব কিছুর ই ভাল কিছু হাতের নাগালে পেতেন তাহলে মন্দ হত না , বিশেষ করে আপনার তখন হাতে গোনা কয়েকটা শেয়ারের মুভমেন্ট , মার্কেট নিউজ, সাপোর্ট , রেজিস্টেন্স , আরএসআই , এমএফআই ইত্যাদি বিবেচনায় রাখলেই আপনি আপনার বিজনেস অনেক সহজ করে নিতে পারবেন।
Market Pulse যেখানে আপনি জানতে পারবেন যে সকল শেয়ার নতুন করে যাত্রা শুরু করতে চাইছে।
মার্কেট লিডিং স্টক সমূহের জনপ্রিয় টেকনিক্যাল ইনডিকেটর এর অবস্থান ।
Pivot Table only Opportunity Stock
Evaluation of Weekly Market
NB: উপরের লিঙ্ক গুলিতে ল্কিক করলে বিস্তারিত জানতে ও দেখতে পারবেন , পিডিএফ ফাইলে।
Friday, 19 October 2018
SUN AND CLOUD for Amibroker (AFL)
Reading of the chart,
1.for long term investors,
a.Bullish when you see the sun(Yellow zone)
b.Bearish when you see the dark cloud(Black
zone)
c.Turning point from bullish to bearish:When
red line break into the yellow zone.
d.Turning point from bearish to bullish: When
red line break through the dark cloud.
2.for short term trading,
reading the changes between the white line and
the red line
Long2 =EMA( ( HHV( H, 20 ) + LLV( L, 20) )/2,20);
Long1 =EMA( ( HHV( H, 5 ) + LLV( L, 5) )/2,10);
K=(H+2*C+L)/4;
Z= ( HHV( H, 3 ) + LLV( L, 3) )/2 ;
SP=IIf(K>=Z*1.05,1.10*Z,IIf(K<Z*1.05 AND K>=Z,1.0*Z,IIf(K<Z,0.9*Z,0.9*Z)));
M=IIf(Long1>long2,Long2,Long1);
Plot(C,"Close",colorBlack,ParamStyle( " Style",1));
SetChartBkGradientFill( ParamColor("Sky",ColorRGB( 128, 128, 255 )),ParamColor("Sky lower", colorGrey40),ParamColor("Text", colorLightGrey));
PlotOHLC( Long1 , Long1 , m, Long1 ," ", ParamColor("Left Side",ColorRGB( 213, 213, 0 )),styleCloud );
PlotOHLC( Long2 , Long2 , m, Long2 ," ", colorGrey40,styleCloud );
PlotOHLC( Long1 , Long1 , m, Long1 ," ", ParamColor("Land",ColorRGB( 115, 61, 54 )),styleArea );
Title=Name() + " Sun & Cloud : \n"+WriteIf(Long1>long2,"Rising Sun","Dark Cloud Cover");
GfxSelectSolidBrush(colorOrange);
GfxCircle( 100, 85 , 28 );
GfxSelectSolidBrush(colorYellow);
GfxSelectPen( colorRed );
GfxCircle( 100, 85 , 20 );
_SECTION_END();
Predictive RSI for Amibroker (AFL)
The following formula was create using the new version of the WiseTrader Toolbox which can compile trained neural networks to AFL.
Yellow RSI – This is the 14 day neural network powered predictive RSI. It is both smooth and has slightly less lag.
Yellow RSI – This is the 14 day neural network powered predictive RSI. It is both smooth and has slightly less lag.
Red – Standard 14 day RSI included with Amibroker.
Anyway, it will be very helpful if you give .I recommend using thresholds for signal generation and use the optimizer to pick the best levels.
_SECTION_BEGIN("Neural Network Powered Predictive RSI");
input0 = RSIa(WMA(C,2), 14) / 100;
input1 = Ref(RSIa(WMA(C,2),14) / 100, -1);
input2 = Ref(RSIa(WMA(C,2),14) / 100, -2);
input3 = Ref(RSIa(WMA(C,2),14) / 100, -3);
input4 = Ref(RSIa(WMA(C,2),14) / 100, -4);
input5 = Ref(RSIa(WMA(C,2),14) / 100, -5);
input6 = Ref(RSIa(WMA(C,2),14) / 100, -6);
input7 = Ref(RSIa(WMA(C,2),14) / 100, -7);
input8 = Ref(RSIa(WMA(C,2),14) / 100, -8);
input9 = Ref(RSIa(WMA(C,2),14) / 100, -9);
input10 = Ref(RSIa(WMA(C,2),14) / 100, -10);
input11 = Ref(RSIa(WMA(C,2),14) / 100, -11);
input12 = Ref(RSIa(WMA(C,2),14) / 100, -12);
input13 = Ref(RSIa(WMA(C,2),14) / 100, -13);
input14 = Ref(RSIa(WMA(C,2),14) / 100, -14);
// Inputs: 15
// Outputs: 1
// Number of neurons per layer: 15 30 30 1
layer_0_0=input0;
layer_0_1=input1;
layer_0_2=input2;
layer_0_3=input3;
layer_0_4=input4;
layer_0_5=input5;
layer_0_6=input6;
layer_0_7=input7;
layer_0_8=input8;
layer_0_9=input9;
layer_0_10=input10;
layer_0_11=input11;
layer_0_12=input12;
layer_0_13=input13;
layer_0_14=input14;
layer_0_15=1;
layer_1_0=0;
layer_1_0+=-2.88435*layer_0_0;
layer_1_0+=-0.145236*layer_0_1;
layer_1_0+=-0.534725*layer_0_2;
layer_1_0+=0.789156*layer_0_3;
layer_1_0+=0.37235*layer_0_4;
layer_1_0+=0.0205776*layer_0_5;
layer_1_0+=-0.381748*layer_0_6;
layer_1_0+=0.690189*layer_0_7;
layer_1_0+=0.462584*layer_0_8;
layer_1_0+=0.550705*layer_0_9;
layer_1_0+=-0.0897613*layer_0_10;
layer_1_0+=1.68387*layer_0_11;
layer_1_0+=0.81285*layer_0_12;
layer_1_0+=0.0114404*layer_0_13;
layer_1_0+=-0.616755*layer_0_14;
layer_1_0+=-0.970031*layer_0_15;
layer_1_0=1/(1+exp(-(layer_1_0)));
layer_1_1=0;
layer_1_1+=-0.903264*layer_0_0;
layer_1_1+=-0.154737*layer_0_1;
layer_1_1+=-0.518103*layer_0_2;
layer_1_1+=-0.450383*layer_0_3;
layer_1_1+=1.16274*layer_0_4;
layer_1_1+=0.0178886*layer_0_5;
layer_1_1+=-0.709718*layer_0_6;
layer_1_1+=-0.983224*layer_0_7;
layer_1_1+=-1.00045*layer_0_8;
layer_1_1+=-0.234438*layer_0_9;
layer_1_1+=0.188592*layer_0_10;
layer_1_1+=0.347817*layer_0_11;
layer_1_1+=0.27297*layer_0_12;
layer_1_1+=0.187848*layer_0_13;
layer_1_1+=-0.733464*layer_0_14;
layer_1_1+=0.32609*layer_0_15;
layer_1_1=1/(1+exp(-(layer_1_1)));
layer_1_2=0;
layer_1_2+=0.425857*layer_0_0;
layer_1_2+=-0.0545361*layer_0_1;
layer_1_2+=-0.839478*layer_0_2;
layer_1_2+=0.197721*layer_0_3;
layer_1_2+=0.513901*layer_0_4;
layer_1_2+=0.597538*layer_0_5;
layer_1_2+=0.0553949*layer_0_6;
layer_1_2+=-0.423691*layer_0_7;
layer_1_2+=0.711133*layer_0_8;
layer_1_2+=0.369812*layer_0_9;
layer_1_2+=0.863078*layer_0_10;
layer_1_2+=0.531257*layer_0_11;
layer_1_2+=-0.16782*layer_0_12;
layer_1_2+=-0.827118*layer_0_13;
layer_1_2+=-0.0849719*layer_0_14;
layer_1_2+=-0.529344*layer_0_15;
layer_1_2=1/(1+exp(-(layer_1_2)));
layer_1_3=0;
layer_1_3+=3.17982*layer_0_0;
layer_1_3+=-0.130061*layer_0_1;
layer_1_3+=0.566761*layer_0_2;
layer_1_3+=0.543639*layer_0_3;
layer_1_3+=0.828445*layer_0_4;
layer_1_3+=0.940563*layer_0_5;
layer_1_3+=0.386646*layer_0_6;
layer_1_3+=-0.0438978*layer_0_7;
layer_1_3+=-0.279062*layer_0_8;
layer_1_3+=-0.417633*layer_0_9;
layer_1_3+=-0.106243*layer_0_10;
layer_1_3+=-2.39544*layer_0_11;
layer_1_3+=-0.875962*layer_0_12;
layer_1_3+=-0.900501*layer_0_13;
layer_1_3+=0.467462*layer_0_14;
layer_1_3+=-0.88757*layer_0_15;
layer_1_3=1/(1+exp(-(layer_1_3)));
layer_1_4=0;
layer_1_4+=-1.89172*layer_0_0;
layer_1_4+=0.498219*layer_0_1;
layer_1_4+=-0.61157*layer_0_2;
layer_1_4+=-0.503196*layer_0_3;
layer_1_4+=0.155329*layer_0_4;
layer_1_4+=0.307746*layer_0_5;
layer_1_4+=0.545425*layer_0_6;
layer_1_4+=0.289903*layer_0_7;
layer_1_4+=-0.232912*layer_0_8;
layer_1_4+=-0.71927*layer_0_9;
layer_1_4+=0.546993*layer_0_10;
layer_1_4+=0.151946*layer_0_11;
layer_1_4+=-0.0816937*layer_0_12;
layer_1_4+=0.750704*layer_0_13;
layer_1_4+=0.313496*layer_0_14;
layer_1_4+=-0.783441*layer_0_15;
layer_1_4=1/(1+exp(-(layer_1_4)));
layer_1_5=0;
layer_1_5+=0.770903*layer_0_0;
layer_1_5+=-0.0255909*layer_0_1;
layer_1_5+=0.514466*layer_0_2;
layer_1_5+=0.145412*layer_0_3;
layer_1_5+=0.0845064*layer_0_4;
layer_1_5+=-0.325864*layer_0_5;
layer_1_5+=-0.723029*layer_0_6;
layer_1_5+=-0.558141*layer_0_7;
layer_1_5+=-0.144106*layer_0_8;
layer_1_5+=0.51629*layer_0_9;
layer_1_5+=-0.219432*layer_0_10;
layer_1_5+=0.537568*layer_0_11;
layer_1_5+=0.234406*layer_0_12;
layer_1_5+=-0.460231*layer_0_13;
layer_1_5+=-0.744961*layer_0_14;
layer_1_5+=0.314615*layer_0_15;
layer_1_5=1/(1+exp(-(layer_1_5)));
layer_1_6=0;
layer_1_6+=-1.44237*layer_0_0;
layer_1_6+=-1.32595*layer_0_1;
layer_1_6+=0.289984*layer_0_2;
layer_1_6+=0.080613*layer_0_3;
layer_1_6+=-0.597297*layer_0_4;
layer_1_6+=0.889638*layer_0_5;
layer_1_6+=-0.834188*layer_0_6;
layer_1_6+=0.618955*layer_0_7;
layer_1_6+=0.169358*layer_0_8;
layer_1_6+=-0.532156*layer_0_9;
layer_1_6+=0.0204259*layer_0_10;
layer_1_6+=-0.377116*layer_0_11;
layer_1_6+=1.07539*layer_0_12;
layer_1_6+=0.235961*layer_0_13;
layer_1_6+=-0.921645*layer_0_14;
layer_1_6+=0.754509*layer_0_15;
layer_1_6=1/(1+exp(-(layer_1_6)));
layer_1_7=0;
layer_1_7+=-0.0259139*layer_0_0;
layer_1_7+=-0.214827*layer_0_1;
layer_1_7+=-0.865682*layer_0_2;
layer_1_7+=-0.799841*layer_0_3;
layer_1_7+=0.480079*layer_0_4;
layer_1_7+=-0.21696*layer_0_5;
layer_1_7+=-0.885368*layer_0_6;
layer_1_7+=-0.215824*layer_0_7;
layer_1_7+=0.229027*layer_0_8;
layer_1_7+=-0.38516*layer_0_9;
layer_1_7+=-0.544635*layer_0_10;
layer_1_7+=0.165535*layer_0_11;
layer_1_7+=0.268931*layer_0_12;
layer_1_7+=0.331209*layer_0_13;
layer_1_7+=0.220778*layer_0_14;
layer_1_7+=-0.0494095*layer_0_15;
layer_1_7=1/(1+exp(-(layer_1_7)));
layer_1_8=0;
layer_1_8+=-1.12635*layer_0_0;
layer_1_8+=-0.364252*layer_0_1;
layer_1_8+=0.659002*layer_0_2;
layer_1_8+=-0.932187*layer_0_3;
layer_1_8+=0.033663*layer_0_4;
layer_1_8+=0.314746*layer_0_5;
layer_1_8+=-0.210119*layer_0_6;
layer_1_8+=-0.87239*layer_0_7;
layer_1_8+=0.805815*layer_0_8;
layer_1_8+=0.739495*layer_0_9;
layer_1_8+=0.0711537*layer_0_10;
layer_1_8+=-0.313738*layer_0_11;
layer_1_8+=-0.108499*layer_0_12;
layer_1_8+=-0.384008*layer_0_13;
layer_1_8+=0.521549*layer_0_14;
layer_1_8+=-0.366253*layer_0_15;
layer_1_8=1/(1+exp(-(layer_1_8)));
layer_1_9=0;
layer_1_9+=-0.273161*layer_0_0;
layer_1_9+=-0.634045*layer_0_1;
layer_1_9+=0.784507*layer_0_2;
layer_1_9+=-0.585906*layer_0_3;
layer_1_9+=0.312875*layer_0_4;
layer_1_9+=-0.00848212*layer_0_5;
layer_1_9+=-0.733062*layer_0_6;
layer_1_9+=0.394302*layer_0_7;
layer_1_9+=0.546809*layer_0_8;
layer_1_9+=-0.332725*layer_0_9;
layer_1_9+=-0.10253*layer_0_10;
layer_1_9+=0.690906*layer_0_11;
layer_1_9+=-1.03437*layer_0_12;
layer_1_9+=0.903911*layer_0_13;
layer_1_9+=0.0666653*layer_0_14;
layer_1_9+=-0.898984*layer_0_15;
layer_1_9=1/(1+exp(-(layer_1_9)));
layer_1_10=0;
layer_1_10+=-1.39372*layer_0_0;
layer_1_10+=-0.892008*layer_0_1;
layer_1_10+=0.717337*layer_0_2;
layer_1_10+=0.406813*layer_0_3;
layer_1_10+=0.466087*layer_0_4;
layer_1_10+=-0.573686*layer_0_5;
layer_1_10+=0.551955*layer_0_6;
layer_1_10+=-0.847024*layer_0_7;
layer_1_10+=-0.915166*layer_0_8;
layer_1_10+=0.495286*layer_0_9;
layer_1_10+=0.0158536*layer_0_10;
layer_1_10+=1.64612*layer_0_11;
layer_1_10+=-0.127765*layer_0_12;
layer_1_10+=-0.366694*layer_0_13;
layer_1_10+=-0.937793*layer_0_14;
layer_1_10+=0.46617*layer_0_15;
layer_1_10=1/(1+exp(-(layer_1_10)));
layer_1_11=0;
layer_1_11+=0.418511*layer_0_0;
layer_1_11+=0.266565*layer_0_1;
layer_1_11+=0.0981416*layer_0_2;
layer_1_11+=0.423731*layer_0_3;
layer_1_11+=-0.553514*layer_0_4;
layer_1_11+=-0.767241*layer_0_5;
layer_1_11+=-1.04742*layer_0_6;
layer_1_11+=-0.933132*layer_0_7;
layer_1_11+=0.56066*layer_0_8;
layer_1_11+=0.680911*layer_0_9;
layer_1_11+=-0.561735*layer_0_10;
layer_1_11+=-0.729072*layer_0_11;
layer_1_11+=0.120629*layer_0_12;
layer_1_11+=-0.991609*layer_0_13;
layer_1_11+=-0.809376*layer_0_14;
layer_1_11+=-0.0909757*layer_0_15;
layer_1_11=1/(1+exp(-(layer_1_11)));
layer_1_12=0;
layer_1_12+=0.593658*layer_0_0;
layer_1_12+=0.369675*layer_0_1;
layer_1_12+=0.0525513*layer_0_2;
layer_1_12+=-0.924349*layer_0_3;
layer_1_12+=-0.2176*layer_0_4;
layer_1_12+=-0.688463*layer_0_5;
layer_1_12+=0.312557*layer_0_6;
layer_1_12+=-0.513327*layer_0_7;
layer_1_12+=-0.192092*layer_0_8;
layer_1_12+=-0.638935*layer_0_9;
layer_1_12+=-0.0263577*layer_0_10;
layer_1_12+=-0.188109*layer_0_11;
layer_1_12+=0.0418108*layer_0_12;
layer_1_12+=-0.841811*layer_0_13;
layer_1_12+=-0.140042*layer_0_14;
layer_1_12+=0.926084*layer_0_15;
layer_1_12=1/(1+exp(-(layer_1_12)));
layer_1_13=0;
layer_1_13+=1.61517*layer_0_0;
layer_1_13+=1.12503*layer_0_1;
layer_1_13+=-0.684729*layer_0_2;
layer_1_13+=-0.477781*layer_0_3;
layer_1_13+=-0.78421*layer_0_4;
layer_1_13+=0.929248*layer_0_5;
layer_1_13+=-0.00793416*layer_0_6;
layer_1_13+=1.09262*layer_0_7;
layer_1_13+=-0.688324*layer_0_8;
layer_1_13+=0.26576*layer_0_9;
layer_1_13+=-1.12617*layer_0_10;
layer_1_13+=-0.713005*layer_0_11;
layer_1_13+=0.651348*layer_0_12;
layer_1_13+=-0.845942*layer_0_13;
layer_1_13+=1.00273*layer_0_14;
layer_1_13+=-0.419965*layer_0_15;
layer_1_13=1/(1+exp(-(layer_1_13)));
layer_1_14=0;
layer_1_14+=0.287145*layer_0_0;
layer_1_14+=0.971221*layer_0_1;
layer_1_14+=-0.000761534*layer_0_2;
layer_1_14+=-0.495094*layer_0_3;
layer_1_14+=0.345184*layer_0_4;
layer_1_14+=0.316862*layer_0_5;
layer_1_14+=0.04238*layer_0_6;
layer_1_14+=0.0621604*layer_0_7;
layer_1_14+=0.323935*layer_0_8;
layer_1_14+=0.290177*layer_0_9;
layer_1_14+=0.564736*layer_0_10;
layer_1_14+=0.363099*layer_0_11;
layer_1_14+=0.11603*layer_0_12;
layer_1_14+=0.440433*layer_0_13;
layer_1_14+=0.216975*layer_0_14;
layer_1_14+=-0.249733*layer_0_15;
layer_1_14=1/(1+exp(-(layer_1_14)));
layer_1_15=0;
layer_1_15+=-2.10428*layer_0_0;
layer_1_15+=0.101225*layer_0_1;
layer_1_15+=0.00738433*layer_0_2;
layer_1_15+=0.801343*layer_0_3;
layer_1_15+=-0.497012*layer_0_4;
layer_1_15+=-0.719246*layer_0_5;
layer_1_15+=-0.00621969*layer_0_6;
layer_1_15+=0.221463*layer_0_7;
layer_1_15+=-0.0775008*layer_0_8;
layer_1_15+=-0.352613*layer_0_9;
layer_1_15+=0.261261*layer_0_10;
layer_1_15+=-0.269299*layer_0_11;
layer_1_15+=0.679556*layer_0_12;
layer_1_15+=0.142106*layer_0_13;
layer_1_15+=-0.006167*layer_0_14;
layer_1_15+=0.382244*layer_0_15;
layer_1_15=1/(1+exp(-(layer_1_15)));
layer_1_16=0;
layer_1_16+=0.875552*layer_0_0;
layer_1_16+=-0.644606*layer_0_1;
layer_1_16+=0.121054*layer_0_2;
layer_1_16+=0.661668*layer_0_3;
layer_1_16+=0.735625*layer_0_4;
layer_1_16+=0.148831*layer_0_5;
layer_1_16+=0.392036*layer_0_6;
layer_1_16+=-0.947599*layer_0_7;
layer_1_16+=0.301088*layer_0_8;
layer_1_16+=0.890409*layer_0_9;
layer_1_16+=-0.492064*layer_0_10;
layer_1_16+=-0.0739343*layer_0_11;
layer_1_16+=-0.519531*layer_0_12;
layer_1_16+=-0.738508*layer_0_13;
layer_1_16+=-0.837431*layer_0_14;
layer_1_16+=0.73809*layer_0_15;
layer_1_16=1/(1+exp(-(layer_1_16)));
layer_1_17=0;
layer_1_17+=0.750466*layer_0_0;
layer_1_17+=0.448156*layer_0_1;
layer_1_17+=-0.740301*layer_0_2;
layer_1_17+=-0.409457*layer_0_3;
layer_1_17+=-0.904982*layer_0_4;
layer_1_17+=-0.908344*layer_0_5;
layer_1_17+=0.253916*layer_0_6;
layer_1_17+=0.616079*layer_0_7;
layer_1_17+=0.0516886*layer_0_8;
layer_1_17+=-0.156377*layer_0_9;
layer_1_17+=-0.272949*layer_0_10;
layer_1_17+=-0.511105*layer_0_11;
layer_1_17+=-0.160287*layer_0_12;
layer_1_17+=-0.0609143*layer_0_13;
layer_1_17+=-0.74444*layer_0_14;
layer_1_17+=-0.353923*layer_0_15;
layer_1_17=1/(1+exp(-(layer_1_17)));
layer_1_18=0;
layer_1_18+=0.906753*layer_0_0;
layer_1_18+=-0.281661*layer_0_1;
layer_1_18+=0.652132*layer_0_2;
layer_1_18+=0.841439*layer_0_3;
layer_1_18+=0.642466*layer_0_4;
layer_1_18+=0.379875*layer_0_5;
layer_1_18+=-0.447282*layer_0_6;
layer_1_18+=0.875164*layer_0_7;
layer_1_18+=-0.787494*layer_0_8;
layer_1_18+=-0.980044*layer_0_9;
layer_1_18+=0.306662*layer_0_10;
layer_1_18+=-0.299585*layer_0_11;
layer_1_18+=-0.0207446*layer_0_12;
layer_1_18+=0.806397*layer_0_13;
layer_1_18+=-0.894213*layer_0_14;
layer_1_18+=0.751274*layer_0_15;
layer_1_18=1/(1+exp(-(layer_1_18)));
layer_1_19=0;
layer_1_19+=-0.126028*layer_0_0;
layer_1_19+=-0.512895*layer_0_1;
layer_1_19+=-0.963341*layer_0_2;
layer_1_19+=-0.103284*layer_0_3;
layer_1_19+=-0.630508*layer_0_4;
layer_1_19+=-0.523715*layer_0_5;
layer_1_19+=0.713312*layer_0_6;
layer_1_19+=-0.0402641*layer_0_7;
layer_1_19+=0.217654*layer_0_8;
layer_1_19+=-0.844982*layer_0_9;
layer_1_19+=0.0040356*layer_0_10;
layer_1_19+=-0.162105*layer_0_11;
layer_1_19+=0.00426175*layer_0_12;
layer_1_19+=0.518868*layer_0_13;
layer_1_19+=-0.114937*layer_0_14;
layer_1_19+=-0.235267*layer_0_15;
layer_1_19=1/(1+exp(-(layer_1_19)));
layer_1_20=0;
layer_1_20+=-0.854894*layer_0_0;
layer_1_20+=-0.463416*layer_0_1;
layer_1_20+=0.0362671*layer_0_2;
layer_1_20+=-0.30845*layer_0_3;
layer_1_20+=-1.05956*layer_0_4;
layer_1_20+=0.28214*layer_0_5;
layer_1_20+=-0.961139*layer_0_6;
layer_1_20+=0.0364025*layer_0_7;
layer_1_20+=0.499485*layer_0_8;
layer_1_20+=-0.101359*layer_0_9;
layer_1_20+=0.644618*layer_0_10;
layer_1_20+=0.320196*layer_0_11;
layer_1_20+=-0.0990875*layer_0_12;
layer_1_20+=0.472437*layer_0_13;
layer_1_20+=-0.0963745*layer_0_14;
layer_1_20+=-0.285806*layer_0_15;
layer_1_20=1/(1+exp(-(layer_1_20)));
layer_1_21=0;
layer_1_21+=0.52515*layer_0_0;
layer_1_21+=-0.129722*layer_0_1;
layer_1_21+=-1.02951*layer_0_2;
layer_1_21+=-0.627888*layer_0_3;
layer_1_21+=-1.09846*layer_0_4;
layer_1_21+=0.130657*layer_0_5;
layer_1_21+=0.551965*layer_0_6;
layer_1_21+=-0.121823*layer_0_7;
layer_1_21+=-1.28235*layer_0_8;
layer_1_21+=-0.673323*layer_0_9;
layer_1_21+=-1.22674*layer_0_10;
layer_1_21+=-0.0495852*layer_0_11;
layer_1_21+=-1.07125*layer_0_12;
layer_1_21+=0.357936*layer_0_13;
layer_1_21+=0.389939*layer_0_14;
layer_1_21+=0.193762*layer_0_15;
layer_1_21=1/(1+exp(-(layer_1_21)));
layer_1_22=0;
layer_1_22+=-0.120243*layer_0_0;
layer_1_22+=0.463105*layer_0_1;
layer_1_22+=-1.04078*layer_0_2;
layer_1_22+=-0.769921*layer_0_3;
layer_1_22+=0.395665*layer_0_4;
layer_1_22+=0.191727*layer_0_5;
layer_1_22+=-0.629235*layer_0_6;
layer_1_22+=-0.964687*layer_0_7;
layer_1_22+=-0.765652*layer_0_8;
layer_1_22+=0.204211*layer_0_9;
layer_1_22+=-0.248889*layer_0_10;
layer_1_22+=-0.188525*layer_0_11;
layer_1_22+=-0.207455*layer_0_12;
layer_1_22+=0.262314*layer_0_13;
layer_1_22+=0.512949*layer_0_14;
layer_1_22+=0.613758*layer_0_15;
layer_1_22=1/(1+exp(-(layer_1_22)));
layer_1_23=0;
layer_1_23+=0.362496*layer_0_0;
layer_1_23+=0.270681*layer_0_1;
layer_1_23+=0.613959*layer_0_2;
layer_1_23+=0.767016*layer_0_3;
layer_1_23+=-0.745292*layer_0_4;
layer_1_23+=0.256653*layer_0_5;
layer_1_23+=-0.158401*layer_0_6;
layer_1_23+=-0.463869*layer_0_7;
layer_1_23+=-0.674215*layer_0_8;
layer_1_23+=0.728837*layer_0_9;
layer_1_23+=-0.94198*layer_0_10;
layer_1_23+=-0.288384*layer_0_11;
layer_1_23+=0.0943042*layer_0_12;
layer_1_23+=-0.374506*layer_0_13;
layer_1_23+=0.150805*layer_0_14;
layer_1_23+=-0.548875*layer_0_15;
layer_1_23=1/(1+exp(-(layer_1_23)));
layer_1_24=0;
layer_1_24+=-0.739786*layer_0_0;
layer_1_24+=-0.910273*layer_0_1;
layer_1_24+=0.567343*layer_0_2;
layer_1_24+=-0.74397*layer_0_3;
layer_1_24+=-0.432017*layer_0_4;
layer_1_24+=0.559987*layer_0_5;
layer_1_24+=0.746891*layer_0_6;
layer_1_24+=0.50889*layer_0_7;
layer_1_24+=0.410383*layer_0_8;
layer_1_24+=0.17624*layer_0_9;
layer_1_24+=-0.21404*layer_0_10;
layer_1_24+=0.835597*layer_0_11;
layer_1_24+=-0.487522*layer_0_12;
layer_1_24+=0.698509*layer_0_13;
layer_1_24+=-0.60823*layer_0_14;
layer_1_24+=-0.5009*layer_0_15;
layer_1_24=1/(1+exp(-(layer_1_24)));
layer_1_25=0;
layer_1_25+=0.393369*layer_0_0;
layer_1_25+=1.10675*layer_0_1;
layer_1_25+=-0.827255*layer_0_2;
layer_1_25+=-0.807197*layer_0_3;
layer_1_25+=0.0734063*layer_0_4;
layer_1_25+=-0.112513*layer_0_5;
layer_1_25+=-0.773126*layer_0_6;
layer_1_25+=-0.438859*layer_0_7;
layer_1_25+=0.84362*layer_0_8;
layer_1_25+=-0.494438*layer_0_9;
layer_1_25+=-0.704585*layer_0_10;
layer_1_25+=-0.7954*layer_0_11;
layer_1_25+=0.858835*layer_0_12;
layer_1_25+=-0.796844*layer_0_13;
layer_1_25+=-0.83458*layer_0_14;
layer_1_25+=-0.882565*layer_0_15;
layer_1_25=1/(1+exp(-(layer_1_25)));
layer_1_26=0;
layer_1_26+=-1.35274*layer_0_0;
layer_1_26+=0.319371*layer_0_1;
layer_1_26+=-0.482825*layer_0_2;
layer_1_26+=-0.307182*layer_0_3;
layer_1_26+=0.755155*layer_0_4;
layer_1_26+=0.550271*layer_0_5;
layer_1_26+=-0.0515558*layer_0_6;
layer_1_26+=0.533553*layer_0_7;
layer_1_26+=0.176782*layer_0_8;
layer_1_26+=-0.360845*layer_0_9;
layer_1_26+=-0.396948*layer_0_10;
layer_1_26+=-0.74021*layer_0_11;
layer_1_26+=0.159247*layer_0_12;
layer_1_26+=0.809663*layer_0_13;
layer_1_26+=-0.364676*layer_0_14;
layer_1_26+=-0.517808*layer_0_15;
layer_1_26=1/(1+exp(-(layer_1_26)));
layer_1_27=0;
layer_1_27+=1.8668*layer_0_0;
layer_1_27+=-0.000391038*layer_0_1;
layer_1_27+=0.481791*layer_0_2;
layer_1_27+=0.737155*layer_0_3;
layer_1_27+=-0.394715*layer_0_4;
layer_1_27+=0.712461*layer_0_5;
layer_1_27+=-0.988611*layer_0_6;
layer_1_27+=0.932892*layer_0_7;
layer_1_27+=0.268788*layer_0_8;
layer_1_27+=0.560095*layer_0_9;
layer_1_27+=-0.0859674*layer_0_10;
layer_1_27+=-1.47148*layer_0_11;
layer_1_27+=-0.866604*layer_0_12;
layer_1_27+=-0.333607*layer_0_13;
layer_1_27+=-0.980961*layer_0_14;
layer_1_27+=-0.164159*layer_0_15;
layer_1_27=1/(1+exp(-(layer_1_27)));
layer_1_28=0;
layer_1_28+=-0.457755*layer_0_0;
layer_1_28+=0.400685*layer_0_1;
layer_1_28+=0.665267*layer_0_2;
layer_1_28+=-0.94255*layer_0_3;
layer_1_28+=0.546915*layer_0_4;
layer_1_28+=0.287815*layer_0_5;
layer_1_28+=0.393195*layer_0_6;
layer_1_28+=0.624391*layer_0_7;
layer_1_28+=0.0897287*layer_0_8;
layer_1_28+=0.34078*layer_0_9;
layer_1_28+=-0.868986*layer_0_10;
layer_1_28+=0.137259*layer_0_11;
layer_1_28+=0.309867*layer_0_12;
layer_1_28+=0.512881*layer_0_13;
layer_1_28+=-0.929729*layer_0_14;
layer_1_28+=0.737358*layer_0_15;
layer_1_28=1/(1+exp(-(layer_1_28)));
layer_1_29=0;
layer_1_29+=0.0816112*layer_0_0;
layer_1_29+=0.262341*layer_0_1;
layer_1_29+=-0.974961*layer_0_2;
layer_1_29+=-0.027541*layer_0_3;
layer_1_29+=0.768947*layer_0_4;
layer_1_29+=-0.990206*layer_0_5;
layer_1_29+=-0.56637*layer_0_6;
layer_1_29+=-0.830815*layer_0_7;
layer_1_29+=0.828238*layer_0_8;
layer_1_29+=0.108372*layer_0_9;
layer_1_29+=-0.525302*layer_0_10;
layer_1_29+=0.722576*layer_0_11;
layer_1_29+=-0.402592*layer_0_12;
layer_1_29+=0.248073*layer_0_13;
layer_1_29+=-0.716658*layer_0_14;
layer_1_29+=-0.688162*layer_0_15;
layer_1_29=1/(1+exp(-(layer_1_29)));
layer_1_30=1;
layer_2_0=0;
layer_2_0+=-0.360461*layer_1_0;
layer_2_0+=0.209585*layer_1_1;
layer_2_0+=0.74828*layer_1_2;
layer_2_0+=-1.07007*layer_1_3;
layer_2_0+=0.880519*layer_1_4;
layer_2_0+=-0.127053*layer_1_5;
layer_2_0+=-0.7654*layer_1_6;
layer_2_0+=0.523181*layer_1_7;
layer_2_0+=-0.565279*layer_1_8;
layer_2_0+=0.92912*layer_1_9;
layer_2_0+=0.667298*layer_1_10;
layer_2_0+=0.708818*layer_1_11;
layer_2_0+=-0.594045*layer_1_12;
layer_2_0+=-0.259896*layer_1_13;
layer_2_0+=-1.03075*layer_1_14;
layer_2_0+=0.556955*layer_1_15;
layer_2_0+=-0.881482*layer_1_16;
layer_2_0+=-0.230645*layer_1_17;
layer_2_0+=-0.430165*layer_1_18;
layer_2_0+=1.01152*layer_1_19;
layer_2_0+=-0.922628*layer_1_20;
layer_2_0+=-0.533118*layer_1_21;
layer_2_0+=-0.631844*layer_1_22;
layer_2_0+=-0.561318*layer_1_23;
layer_2_0+=-0.703253*layer_1_24;
layer_2_0+=0.240481*layer_1_25;
layer_2_0+=0.648842*layer_1_26;
layer_2_0+=0.746091*layer_1_27;
layer_2_0+=-0.633766*layer_1_28;
layer_2_0+=0.553323*layer_1_29;
layer_2_0+=0.291116*layer_1_30;
layer_2_0=1/(1+exp(-(layer_2_0)));
layer_2_1=0;
layer_2_1+=0.414386*layer_1_0;
layer_2_1+=0.948791*layer_1_1;
layer_2_1+=-0.114337*layer_1_2;
layer_2_1+=0.531647*layer_1_3;
layer_2_1+=0.341233*layer_1_4;
layer_2_1+=-0.70561*layer_1_5;
layer_2_1+=0.291443*layer_1_6;
layer_2_1+=0.129484*layer_1_7;
layer_2_1+=-0.12803*layer_1_8;
layer_2_1+=0.858183*layer_1_9;
layer_2_1+=0.156355*layer_1_10;
layer_2_1+=0.116072*layer_1_11;
layer_2_1+=0.0588867*layer_1_12;
layer_2_1+=-0.702125*layer_1_13;
layer_2_1+=-0.236206*layer_1_14;
layer_2_1+=-0.277732*layer_1_15;
layer_2_1+=-1.06278*layer_1_16;
layer_2_1+=0.549476*layer_1_17;
layer_2_1+=-0.736565*layer_1_18;
layer_2_1+=-0.849333*layer_1_19;
layer_2_1+=-0.229584*layer_1_20;
layer_2_1+=0.147459*layer_1_21;
layer_2_1+=-0.864282*layer_1_22;
layer_2_1+=-0.687914*layer_1_23;
layer_2_1+=-0.706116*layer_1_24;
layer_2_1+=0.289177*layer_1_25;
layer_2_1+=-0.217216*layer_1_26;
layer_2_1+=0.0221003*layer_1_27;
layer_2_1+=0.353177*layer_1_28;
layer_2_1+=-0.12094*layer_1_29;
layer_2_1+=0.368938*layer_1_30;
layer_2_1=1/(1+exp(-(layer_2_1)));
layer_2_2=0;
layer_2_2+=-0.105642*layer_1_0;
layer_2_2+=0.787375*layer_1_1;
layer_2_2+=-0.0539234*layer_1_2;
layer_2_2+=-1.25291*layer_1_3;
layer_2_2+=0.900856*layer_1_4;
layer_2_2+=0.539005*layer_1_5;
layer_2_2+=-0.235025*layer_1_6;
layer_2_2+=0.794267*layer_1_7;
layer_2_2+=-0.699339*layer_1_8;
layer_2_2+=0.597305*layer_1_9;
layer_2_2+=0.175169*layer_1_10;
layer_2_2+=-0.206331*layer_1_11;
layer_2_2+=0.085381*layer_1_12;
layer_2_2+=-0.0905111*layer_1_13;
layer_2_2+=-1.194*layer_1_14;
layer_2_2+=-0.512318*layer_1_15;
layer_2_2+=-0.830135*layer_1_16;
layer_2_2+=-0.324545*layer_1_17;
layer_2_2+=0.411533*layer_1_18;
layer_2_2+=0.330762*layer_1_19;
layer_2_2+=0.324019*layer_1_20;
layer_2_2+=0.663648*layer_1_21;
layer_2_2+=-0.268886*layer_1_22;
layer_2_2+=-0.408682*layer_1_23;
layer_2_2+=0.698212*layer_1_24;
layer_2_2+=-0.417176*layer_1_25;
layer_2_2+=-0.462567*layer_1_26;
layer_2_2+=-0.220788*layer_1_27;
layer_2_2+=-0.593278*layer_1_28;
layer_2_2+=0.397824*layer_1_29;
layer_2_2+=0.490707*layer_1_30;
layer_2_2=1/(1+exp(-(layer_2_2)));
layer_2_3=0;
layer_2_3+=0.520544*layer_1_0;
layer_2_3+=0.526604*layer_1_1;
layer_2_3+=-0.762685*layer_1_2;
layer_2_3+=-0.680237*layer_1_3;
layer_2_3+=-0.435506*layer_1_4;
layer_2_3+=0.357005*layer_1_5;
layer_2_3+=0.833703*layer_1_6;
layer_2_3+=-0.299856*layer_1_7;
layer_2_3+=0.0388757*layer_1_8;
layer_2_3+=-0.815986*layer_1_9;
layer_2_3+=0.8702*layer_1_10;
layer_2_3+=-0.600201*layer_1_11;
layer_2_3+=0.0165282*layer_1_12;
layer_2_3+=0.292008*layer_1_13;
layer_2_3+=-0.18807*layer_1_14;
layer_2_3+=0.394491*layer_1_15;
layer_2_3+=-0.850996*layer_1_16;
layer_2_3+=-0.866031*layer_1_17;
layer_2_3+=-0.893057*layer_1_18;
layer_2_3+=-0.967646*layer_1_19;
layer_2_3+=-0.305111*layer_1_20;
layer_2_3+=-0.414503*layer_1_21;
layer_2_3+=0.371531*layer_1_22;
layer_2_3+=-0.7252*layer_1_23;
layer_2_3+=-0.233107*layer_1_24;
layer_2_3+=-0.867098*layer_1_25;
layer_2_3+=0.319453*layer_1_26;
layer_2_3+=0.390428*layer_1_27;
layer_2_3+=-0.646585*layer_1_28;
layer_2_3+=0.384825*layer_1_29;
layer_2_3+=0.231422*layer_1_30;
layer_2_3=1/(1+exp(-(layer_2_3)));
layer_2_4=0;
layer_2_4+=0.414425*layer_1_0;
layer_2_4+=0.231496*layer_1_1;
layer_2_4+=-0.932583*layer_1_2;
layer_2_4+=-0.230161*layer_1_3;
layer_2_4+=-0.892047*layer_1_4;
layer_2_4+=0.895878*layer_1_5;
layer_2_4+=-0.0666212*layer_1_6;
layer_2_4+=0.851379*layer_1_7;
layer_2_4+=0.478123*layer_1_8;
layer_2_4+=0.0313076*layer_1_9;
layer_2_4+=0.407743*layer_1_10;
layer_2_4+=0.337354*layer_1_11;
layer_2_4+=-0.290608*layer_1_12;
layer_2_4+=-0.395379*layer_1_13;
layer_2_4+=-0.967332*layer_1_14;
layer_2_4+=0.594848*layer_1_15;
layer_2_4+=-0.83653*layer_1_16;
layer_2_4+=-0.930534*layer_1_17;
layer_2_4+=-0.489412*layer_1_18;
layer_2_4+=0.54853*layer_1_19;
layer_2_4+=-0.631391*layer_1_20;
layer_2_4+=-0.400309*layer_1_21;
layer_2_4+=-0.0748118*layer_1_22;
layer_2_4+=-1.07534*layer_1_23;
layer_2_4+=-0.200627*layer_1_24;
layer_2_4+=0.0124488*layer_1_25;
layer_2_4+=0.0462966*layer_1_26;
layer_2_4+=0.341769*layer_1_27;
layer_2_4+=-0.241579*layer_1_28;
layer_2_4+=-0.334957*layer_1_29;
layer_2_4+=0.685293*layer_1_30;
layer_2_4=1/(1+exp(-(layer_2_4)));
layer_2_5=0;
layer_2_5+=1.03016*layer_1_0;
layer_2_5+=0.520765*layer_1_1;
layer_2_5+=0.65785*layer_1_2;
layer_2_5+=-1.74135*layer_1_3;
layer_2_5+=0.174141*layer_1_4;
layer_2_5+=0.547159*layer_1_5;
layer_2_5+=-0.24855*layer_1_6;
layer_2_5+=-0.589863*layer_1_7;
layer_2_5+=-0.480356*layer_1_8;
layer_2_5+=-1.19622*layer_1_9;
layer_2_5+=0.317195*layer_1_10;
layer_2_5+=-0.311582*layer_1_11;
layer_2_5+=-1.09335*layer_1_12;
layer_2_5+=-1.18498*layer_1_13;
layer_2_5+=-0.394131*layer_1_14;
layer_2_5+=0.621542*layer_1_15;
layer_2_5+=0.459999*layer_1_16;
layer_2_5+=-0.290442*layer_1_17;
layer_2_5+=0.0109087*layer_1_18;
layer_2_5+=0.0982616*layer_1_19;
layer_2_5+=0.471182*layer_1_20;
layer_2_5+=0.585773*layer_1_21;
layer_2_5+=0.0739391*layer_1_22;
layer_2_5+=-0.00827993*layer_1_23;
layer_2_5+=-1.06385*layer_1_24;
layer_2_5+=0.562647*layer_1_25;
layer_2_5+=-0.452581*layer_1_26;
layer_2_5+=-0.388933*layer_1_27;
layer_2_5+=-0.274653*layer_1_28;
layer_2_5+=0.0685861*layer_1_29;
layer_2_5+=0.63213*layer_1_30;
layer_2_5=1/(1+exp(-(layer_2_5)));
layer_2_6=0;
layer_2_6+=0.518181*layer_1_0;
layer_2_6+=-0.134896*layer_1_1;
layer_2_6+=-1.21565*layer_1_2;
layer_2_6+=-0.934044*layer_1_3;
layer_2_6+=-0.305191*layer_1_4;
layer_2_6+=-0.717035*layer_1_5;
layer_2_6+=0.524246*layer_1_6;
layer_2_6+=-0.49473*layer_1_7;
layer_2_6+=0.713848*layer_1_8;
layer_2_6+=-0.997537*layer_1_9;
layer_2_6+=0.467984*layer_1_10;
layer_2_6+=0.168859*layer_1_11;
layer_2_6+=0.568716*layer_1_12;
layer_2_6+=-0.936647*layer_1_13;
layer_2_6+=-0.277193*layer_1_14;
layer_2_6+=0.744216*layer_1_15;
layer_2_6+=0.219112*layer_1_16;
layer_2_6+=0.767563*layer_1_17;
layer_2_6+=-1.0385*layer_1_18;
layer_2_6+=0.71627*layer_1_19;
layer_2_6+=0.491294*layer_1_20;
layer_2_6+=0.731034*layer_1_21;
layer_2_6+=0.524213*layer_1_22;
layer_2_6+=0.6263*layer_1_23;
layer_2_6+=0.160717*layer_1_24;
layer_2_6+=-0.668625*layer_1_25;
layer_2_6+=-0.126627*layer_1_26;
layer_2_6+=-0.782071*layer_1_27;
layer_2_6+=-0.829947*layer_1_28;
layer_2_6+=0.390752*layer_1_29;
layer_2_6+=0.57622*layer_1_30;
layer_2_6=1/(1+exp(-(layer_2_6)));
layer_2_7=0;
layer_2_7+=-0.481307*layer_1_0;
layer_2_7+=0.623768*layer_1_1;
layer_2_7+=-0.124461*layer_1_2;
layer_2_7+=-1.14169*layer_1_3;
layer_2_7+=0.689149*layer_1_4;
layer_2_7+=0.663478*layer_1_5;
layer_2_7+=-0.690893*layer_1_6;
layer_2_7+=-0.481194*layer_1_7;
layer_2_7+=0.240699*layer_1_8;
layer_2_7+=-0.123896*layer_1_9;
layer_2_7+=0.619085*layer_1_10;
layer_2_7+=-0.66139*layer_1_11;
layer_2_7+=0.377577*layer_1_12;
layer_2_7+=0.868932*layer_1_13;
layer_2_7+=-1.07908*layer_1_14;
layer_2_7+=0.305165*layer_1_15;
layer_2_7+=0.315567*layer_1_16;
layer_2_7+=-0.737608*layer_1_17;
layer_2_7+=-0.989557*layer_1_18;
layer_2_7+=-0.437672*layer_1_19;
layer_2_7+=0.327419*layer_1_20;
layer_2_7+=0.60587*layer_1_21;
layer_2_7+=0.0642929*layer_1_22;
layer_2_7+=-0.328713*layer_1_23;
layer_2_7+=0.56293*layer_1_24;
layer_2_7+=-0.54394*layer_1_25;
layer_2_7+=0.141403*layer_1_26;
layer_2_7+=-0.686351*layer_1_27;
layer_2_7+=-0.727148*layer_1_28;
layer_2_7+=0.930244*layer_1_29;
layer_2_7+=-0.436506*layer_1_30;
layer_2_7=1/(1+exp(-(layer_2_7)));
layer_2_8=0;
layer_2_8+=-1.07493*layer_1_0;
layer_2_8+=0.428194*layer_1_1;
layer_2_8+=-0.77109*layer_1_2;
layer_2_8+=-0.810575*layer_1_3;
layer_2_8+=-1.0336*layer_1_4;
layer_2_8+=-0.372395*layer_1_5;
layer_2_8+=0.238994*layer_1_6;
layer_2_8+=-0.338715*layer_1_7;
layer_2_8+=-0.251634*layer_1_8;
layer_2_8+=-0.218793*layer_1_9;
layer_2_8+=-0.896257*layer_1_10;
layer_2_8+=0.090219*layer_1_11;
layer_2_8+=0.350133*layer_1_12;
layer_2_8+=-0.282838*layer_1_13;
layer_2_8+=0.229841*layer_1_14;
layer_2_8+=0.726493*layer_1_15;
layer_2_8+=0.046559*layer_1_16;
layer_2_8+=0.140939*layer_1_17;
layer_2_8+=-0.966357*layer_1_18;
layer_2_8+=-0.112692*layer_1_19;
layer_2_8+=-0.528399*layer_1_20;
layer_2_8+=-0.155603*layer_1_21;
layer_2_8+=0.679723*layer_1_22;
layer_2_8+=-0.0264462*layer_1_23;
layer_2_8+=-0.887629*layer_1_24;
layer_2_8+=0.122463*layer_1_25;
layer_2_8+=0.399873*layer_1_26;
layer_2_8+=0.592173*layer_1_27;
layer_2_8+=0.620161*layer_1_28;
layer_2_8+=0.665697*layer_1_29;
layer_2_8+=-0.413984*layer_1_30;
layer_2_8=1/(1+exp(-(layer_2_8)));
layer_2_9=0;
layer_2_9+=0.518309*layer_1_0;
layer_2_9+=0.10487*layer_1_1;
layer_2_9+=0.377541*layer_1_2;
layer_2_9+=0.72233*layer_1_3;
layer_2_9+=0.352956*layer_1_4;
layer_2_9+=0.645303*layer_1_5;
layer_2_9+=0.622508*layer_1_6;
layer_2_9+=0.696844*layer_1_7;
layer_2_9+=-0.129262*layer_1_8;
layer_2_9+=-0.164783*layer_1_9;
layer_2_9+=-0.94045*layer_1_10;
layer_2_9+=-0.300466*layer_1_11;
layer_2_9+=0.539642*layer_1_12;
layer_2_9+=-0.174037*layer_1_13;
layer_2_9+=-0.833996*layer_1_14;
layer_2_9+=-1.15405*layer_1_15;
layer_2_9+=0.243639*layer_1_16;
layer_2_9+=0.523857*layer_1_17;
layer_2_9+=-0.979288*layer_1_18;
layer_2_9+=-0.951623*layer_1_19;
layer_2_9+=-0.365721*layer_1_20;
layer_2_9+=0.34915*layer_1_21;
layer_2_9+=0.490777*layer_1_22;
layer_2_9+=-0.718607*layer_1_23;
layer_2_9+=-0.883571*layer_1_24;
layer_2_9+=-0.925641*layer_1_25;
layer_2_9+=-0.350229*layer_1_26;
layer_2_9+=-0.968843*layer_1_27;
layer_2_9+=0.867401*layer_1_28;
layer_2_9+=0.229597*layer_1_29;
layer_2_9+=-0.892697*layer_1_30;
layer_2_9=1/(1+exp(-(layer_2_9)));
layer_2_10=0;
layer_2_10+=0.389509*layer_1_0;
layer_2_10+=-0.00284077*layer_1_1;
layer_2_10+=-0.238095*layer_1_2;
layer_2_10+=-1.09649*layer_1_3;
layer_2_10+=-0.830579*layer_1_4;
layer_2_10+=-0.300995*layer_1_5;
layer_2_10+=-0.0449177*layer_1_6;
layer_2_10+=0.463795*layer_1_7;
layer_2_10+=-1.20552*layer_1_8;
layer_2_10+=0.568163*layer_1_9;
layer_2_10+=-1.06258*layer_1_10;
layer_2_10+=0.199661*layer_1_11;
layer_2_10+=-0.147282*layer_1_12;
layer_2_10+=0.775319*layer_1_13;
layer_2_10+=-0.452793*layer_1_14;
layer_2_10+=-0.688876*layer_1_15;
layer_2_10+=-0.589081*layer_1_16;
layer_2_10+=0.499935*layer_1_17;
layer_2_10+=-0.545469*layer_1_18;
layer_2_10+=-0.20014*layer_1_19;
layer_2_10+=0.0759415*layer_1_20;
layer_2_10+=-0.841555*layer_1_21;
layer_2_10+=0.759882*layer_1_22;
layer_2_10+=0.341077*layer_1_23;
layer_2_10+=-0.934718*layer_1_24;
layer_2_10+=-0.133118*layer_1_25;
layer_2_10+=0.298355*layer_1_26;
layer_2_10+=0.806895*layer_1_27;
layer_2_10+=0.336181*layer_1_28;
layer_2_10+=0.241289*layer_1_29;
layer_2_10+=0.242409*layer_1_30;
layer_2_10=1/(1+exp(-(layer_2_10)));
layer_2_11=0;
layer_2_11+=0.524337*layer_1_0;
layer_2_11+=0.0773675*layer_1_1;
layer_2_11+=-0.520167*layer_1_2;
layer_2_11+=0.469051*layer_1_3;
layer_2_11+=-0.693429*layer_1_4;
layer_2_11+=0.00747091*layer_1_5;
layer_2_11+=0.147363*layer_1_6;
layer_2_11+=-0.619299*layer_1_7;
layer_2_11+=-0.14519*layer_1_8;
layer_2_11+=-0.0664281*layer_1_9;
layer_2_11+=0.624413*layer_1_10;
layer_2_11+=0.356173*layer_1_11;
layer_2_11+=0.466162*layer_1_12;
layer_2_11+=0.469301*layer_1_13;
layer_2_11+=-0.208324*layer_1_14;
layer_2_11+=0.375513*layer_1_15;
layer_2_11+=0.487799*layer_1_16;
layer_2_11+=1.01006*layer_1_17;
layer_2_11+=-0.658319*layer_1_18;
layer_2_11+=0.107963*layer_1_19;
layer_2_11+=0.657808*layer_1_20;
layer_2_11+=0.195767*layer_1_21;
layer_2_11+=0.705774*layer_1_22;
layer_2_11+=0.0420155*layer_1_23;
layer_2_11+=-0.23564*layer_1_24;
layer_2_11+=-0.115281*layer_1_25;
layer_2_11+=0.74948*layer_1_26;
layer_2_11+=1.0508*layer_1_27;
layer_2_11+=-0.735553*layer_1_28;
layer_2_11+=-0.568619*layer_1_29;
layer_2_11+=-0.593982*layer_1_30;
layer_2_11=1/(1+exp(-(layer_2_11)));
layer_2_12=0;
layer_2_12+=0.793569*layer_1_0;
layer_2_12+=1.17403*layer_1_1;
layer_2_12+=0.364798*layer_1_2;
layer_2_12+=-1.09313*layer_1_3;
layer_2_12+=0.531266*layer_1_4;
layer_2_12+=-0.763163*layer_1_5;
layer_2_12+=0.360784*layer_1_6;
layer_2_12+=0.0792123*layer_1_7;
layer_2_12+=0.107043*layer_1_8;
layer_2_12+=-0.82849*layer_1_9;
layer_2_12+=1.29526*layer_1_10;
layer_2_12+=-0.776481*layer_1_11;
layer_2_12+=0.153676*layer_1_12;
layer_2_12+=-1.18748*layer_1_13;
layer_2_12+=-0.595714*layer_1_14;
layer_2_12+=0.526254*layer_1_15;
layer_2_12+=-0.411218*layer_1_16;
layer_2_12+=-0.456852*layer_1_17;
layer_2_12+=0.310753*layer_1_18;
layer_2_12+=-0.135013*layer_1_19;
layer_2_12+=-0.0641765*layer_1_20;
layer_2_12+=-0.624076*layer_1_21;
layer_2_12+=0.364239*layer_1_22;
layer_2_12+=-0.708557*layer_1_23;
layer_2_12+=0.160462*layer_1_24;
layer_2_12+=0.00579065*layer_1_25;
layer_2_12+=0.528798*layer_1_26;
layer_2_12+=-0.314008*layer_1_27;
layer_2_12+=-0.866941*layer_1_28;
layer_2_12+=-0.251546*layer_1_29;
layer_2_12+=-0.248207*layer_1_30;
layer_2_12=1/(1+exp(-(layer_2_12)));
layer_2_13=0;
layer_2_13+=-0.935475*layer_1_0;
layer_2_13+=0.577332*layer_1_1;
layer_2_13+=0.111856*layer_1_2;
layer_2_13+=0.454911*layer_1_3;
layer_2_13+=0.0750372*layer_1_4;
layer_2_13+=-0.0308225*layer_1_5;
layer_2_13+=-0.202686*layer_1_6;
layer_2_13+=0.262935*layer_1_7;
layer_2_13+=0.30969*layer_1_8;
layer_2_13+=0.628485*layer_1_9;
layer_2_13+=-0.273605*layer_1_10;
layer_2_13+=-0.352063*layer_1_11;
layer_2_13+=-1.01909*layer_1_12;
layer_2_13+=0.550696*layer_1_13;
layer_2_13+=0.190688*layer_1_14;
layer_2_13+=-0.266184*layer_1_15;
layer_2_13+=-1.11583*layer_1_16;
layer_2_13+=0.65652*layer_1_17;
layer_2_13+=0.0397617*layer_1_18;
layer_2_13+=-1.04028*layer_1_19;
layer_2_13+=-0.356533*layer_1_20;
layer_2_13+=0.762891*layer_1_21;
layer_2_13+=-1.05583*layer_1_22;
layer_2_13+=-0.841675*layer_1_23;
layer_2_13+=-0.819832*layer_1_24;
layer_2_13+=-0.800852*layer_1_25;
layer_2_13+=-0.0708593*layer_1_26;
layer_2_13+=-1.02503*layer_1_27;
layer_2_13+=-0.216276*layer_1_28;
layer_2_13+=0.0315307*layer_1_29;
layer_2_13+=0.380596*layer_1_30;
layer_2_13=1/(1+exp(-(layer_2_13)));
layer_2_14=0;
layer_2_14+=0.437081*layer_1_0;
layer_2_14+=0.838557*layer_1_1;
layer_2_14+=0.193945*layer_1_2;
layer_2_14+=-0.616544*layer_1_3;
layer_2_14+=0.539586*layer_1_4;
layer_2_14+=-0.374241*layer_1_5;
layer_2_14+=0.897177*layer_1_6;
layer_2_14+=0.429945*layer_1_7;
layer_2_14+=-0.667664*layer_1_8;
layer_2_14+=-0.73718*layer_1_9;
layer_2_14+=-0.257755*layer_1_10;
layer_2_14+=-0.678867*layer_1_11;
layer_2_14+=0.0619953*layer_1_12;
layer_2_14+=-0.802506*layer_1_13;
layer_2_14+=0.758464*layer_1_14;
layer_2_14+=-0.704873*layer_1_15;
layer_2_14+=-0.404602*layer_1_16;
layer_2_14+=-0.452281*layer_1_17;
layer_2_14+=-0.931252*layer_1_18;
layer_2_14+=-0.675282*layer_1_19;
layer_2_14+=-1.00286*layer_1_20;
layer_2_14+=0.491718*layer_1_21;
layer_2_14+=0.43248*layer_1_22;
layer_2_14+=0.677323*layer_1_23;
layer_2_14+=-1.11536*layer_1_24;
layer_2_14+=-0.114957*layer_1_25;
layer_2_14+=-0.281336*layer_1_26;
layer_2_14+=0.466074*layer_1_27;
layer_2_14+=-0.227164*layer_1_28;
layer_2_14+=-0.0701391*layer_1_29;
layer_2_14+=0.498764*layer_1_30;
layer_2_14=1/(1+exp(-(layer_2_14)));
layer_2_15=0;
layer_2_15+=-1.38523*layer_1_0;
layer_2_15+=-0.538271*layer_1_1;
layer_2_15+=-0.998365*layer_1_2;
layer_2_15+=1.20583*layer_1_3;
layer_2_15+=0.267955*layer_1_4;
layer_2_15+=0.604999*layer_1_5;
layer_2_15+=-1.53097*layer_1_6;
layer_2_15+=-0.171139*layer_1_7;
layer_2_15+=-0.28431*layer_1_8;
layer_2_15+=0.393363*layer_1_9;
layer_2_15+=-0.32627*layer_1_10;
layer_2_15+=-0.538241*layer_1_11;
layer_2_15+=0.566222*layer_1_12;
layer_2_15+=0.708349*layer_1_13;
layer_2_15+=-0.882228*layer_1_14;
layer_2_15+=-0.503978*layer_1_15;
layer_2_15+=-0.913141*layer_1_16;
layer_2_15+=0.0413626*layer_1_17;
layer_2_15+=0.462976*layer_1_18;
layer_2_15+=0.105607*layer_1_19;
layer_2_15+=-1.27749*layer_1_20;
layer_2_15+=0.430397*layer_1_21;
layer_2_15+=-0.149091*layer_1_22;
layer_2_15+=0.69976*layer_1_23;
layer_2_15+=0.43507*layer_1_24;
layer_2_15+=0.533251*layer_1_25;
layer_2_15+=-0.328671*layer_1_26;
layer_2_15+=-0.179847*layer_1_27;
layer_2_15+=-0.163278*layer_1_28;
layer_2_15+=-0.976876*layer_1_29;
layer_2_15+=0.303934*layer_1_30;
layer_2_15=1/(1+exp(-(layer_2_15)));
layer_2_16=0;
layer_2_16+=-0.918896*layer_1_0;
layer_2_16+=0.646697*layer_1_1;
layer_2_16+=0.454604*layer_1_2;
layer_2_16+=-0.838451*layer_1_3;
layer_2_16+=-0.674103*layer_1_4;
layer_2_16+=-0.906382*layer_1_5;
layer_2_16+=0.34749*layer_1_6;
layer_2_16+=-0.958057*layer_1_7;
layer_2_16+=-0.284761*layer_1_8;
layer_2_16+=0.371971*layer_1_9;
layer_2_16+=0.642955*layer_1_10;
layer_2_16+=-0.165229*layer_1_11;
layer_2_16+=0.948875*layer_1_12;
layer_2_16+=0.0573743*layer_1_13;
layer_2_16+=-0.436724*layer_1_14;
layer_2_16+=-0.0370569*layer_1_15;
layer_2_16+=0.610892*layer_1_16;
layer_2_16+=-0.875168*layer_1_17;
layer_2_16+=-0.942319*layer_1_18;
layer_2_16+=-0.714514*layer_1_19;
layer_2_16+=-0.724241*layer_1_20;
layer_2_16+=0.798881*layer_1_21;
layer_2_16+=-0.386796*layer_1_22;
layer_2_16+=-0.335941*layer_1_23;
layer_2_16+=0.591155*layer_1_24;
layer_2_16+=-0.906355*layer_1_25;
layer_2_16+=0.506619*layer_1_26;
layer_2_16+=-0.659451*layer_1_27;
layer_2_16+=0.723363*layer_1_28;
layer_2_16+=-0.494407*layer_1_29;
layer_2_16+=-0.461287*layer_1_30;
layer_2_16=1/(1+exp(-(layer_2_16)));
layer_2_17=0;
layer_2_17+=-1.03823*layer_1_0;
layer_2_17+=-0.874455*layer_1_1;
layer_2_17+=0.279622*layer_1_2;
layer_2_17+=0.831561*layer_1_3;
layer_2_17+=0.493906*layer_1_4;
layer_2_17+=0.23794*layer_1_5;
layer_2_17+=-0.0528871*layer_1_6;
layer_2_17+=-1.16186*layer_1_7;
layer_2_17+=-0.904231*layer_1_8;
layer_2_17+=-0.957919*layer_1_9;
layer_2_17+=-0.63155*layer_1_10;
layer_2_17+=-0.167196*layer_1_11;
layer_2_17+=-0.938665*layer_1_12;
layer_2_17+=0.732555*layer_1_13;
layer_2_17+=-0.245006*layer_1_14;
layer_2_17+=-0.107976*layer_1_15;
layer_2_17+=0.545264*layer_1_16;
layer_2_17+=-0.00150105*layer_1_17;
layer_2_17+=-0.0640357*layer_1_18;
layer_2_17+=0.848832*layer_1_19;
layer_2_17+=0.717506*layer_1_20;
layer_2_17+=0.632171*layer_1_21;
layer_2_17+=0.400886*layer_1_22;
layer_2_17+=-0.818517*layer_1_23;
layer_2_17+=-0.642906*layer_1_24;
layer_2_17+=-0.482206*layer_1_25;
layer_2_17+=-0.892465*layer_1_26;
layer_2_17+=0.893071*layer_1_27;
layer_2_17+=-0.0567846*layer_1_28;
layer_2_17+=0.234591*layer_1_29;
layer_2_17+=-0.938231*layer_1_30;
layer_2_17=1/(1+exp(-(layer_2_17)));
layer_2_18=0;
layer_2_18+=-0.131699*layer_1_0;
layer_2_18+=0.318497*layer_1_1;
layer_2_18+=0.340246*layer_1_2;
layer_2_18+=0.658336*layer_1_3;
layer_2_18+=-1.03216*layer_1_4;
layer_2_18+=0.384061*layer_1_5;
layer_2_18+=-0.563154*layer_1_6;
layer_2_18+=0.127772*layer_1_7;
layer_2_18+=0.59173*layer_1_8;
layer_2_18+=0.727657*layer_1_9;
layer_2_18+=-1.26672*layer_1_10;
layer_2_18+=0.52159*layer_1_11;
layer_2_18+=-0.306006*layer_1_12;
layer_2_18+=-1.07646*layer_1_13;
layer_2_18+=-0.844367*layer_1_14;
layer_2_18+=-0.425977*layer_1_15;
layer_2_18+=-0.785529*layer_1_16;
layer_2_18+=0.778698*layer_1_17;
layer_2_18+=-0.117601*layer_1_18;
layer_2_18+=-0.672039*layer_1_19;
layer_2_18+=0.357325*layer_1_20;
layer_2_18+=0.780441*layer_1_21;
layer_2_18+=-0.787072*layer_1_22;
layer_2_18+=-1.03478*layer_1_23;
layer_2_18+=0.310441*layer_1_24;
layer_2_18+=-0.586746*layer_1_25;
layer_2_18+=0.0634134*layer_1_26;
layer_2_18+=0.535679*layer_1_27;
layer_2_18+=0.605757*layer_1_28;
layer_2_18+=-0.374192*layer_1_29;
layer_2_18+=0.0778527*layer_1_30;
layer_2_18=1/(1+exp(-(layer_2_18)));
layer_2_19=0;
layer_2_19+=0.835987*layer_1_0;
layer_2_19+=0.611523*layer_1_1;
layer_2_19+=0.124802*layer_1_2;
layer_2_19+=-0.551505*layer_1_3;
layer_2_19+=0.463565*layer_1_4;
layer_2_19+=-0.421994*layer_1_5;
layer_2_19+=-0.441741*layer_1_6;
layer_2_19+=-1.06716*layer_1_7;
layer_2_19+=-0.0320862*layer_1_8;
layer_2_19+=-0.324931*layer_1_9;
layer_2_19+=-0.888618*layer_1_10;
layer_2_19+=-0.370432*layer_1_11;
layer_2_19+=0.670944*layer_1_12;
layer_2_19+=-0.631653*layer_1_13;
layer_2_19+=0.677061*layer_1_14;
layer_2_19+=-0.900227*layer_1_15;
layer_2_19+=0.621488*layer_1_16;
layer_2_19+=0.750188*layer_1_17;
layer_2_19+=-0.265956*layer_1_18;
layer_2_19+=-0.665917*layer_1_19;
layer_2_19+=0.140073*layer_1_20;
layer_2_19+=0.0409273*layer_1_21;
layer_2_19+=0.128675*layer_1_22;
layer_2_19+=-0.172711*layer_1_23;
layer_2_19+=-1.12296*layer_1_24;
layer_2_19+=0.708826*layer_1_25;
layer_2_19+=-0.742522*layer_1_26;
layer_2_19+=-0.506713*layer_1_27;
layer_2_19+=-0.606313*layer_1_28;
layer_2_19+=0.284887*layer_1_29;
layer_2_19+=0.122898*layer_1_30;
layer_2_19=1/(1+exp(-(layer_2_19)));
layer_2_20=0;
layer_2_20+=0.471093*layer_1_0;
layer_2_20+=-0.151355*layer_1_1;
layer_2_20+=0.524971*layer_1_2;
layer_2_20+=0.249567*layer_1_3;
layer_2_20+=0.340268*layer_1_4;
layer_2_20+=0.414255*layer_1_5;
layer_2_20+=-0.999903*layer_1_6;
layer_2_20+=-0.0399986*layer_1_7;
layer_2_20+=-1.21*layer_1_8;
layer_2_20+=-0.993102*layer_1_9;
layer_2_20+=0.246772*layer_1_10;
layer_2_20+=-0.297423*layer_1_11;
layer_2_20+=0.766717*layer_1_12;
layer_2_20+=0.15572*layer_1_13;
layer_2_20+=0.470859*layer_1_14;
layer_2_20+=-1.10197*layer_1_15;
layer_2_20+=0.251672*layer_1_16;
layer_2_20+=-0.902293*layer_1_17;
layer_2_20+=0.343991*layer_1_18;
layer_2_20+=0.797213*layer_1_19;
layer_2_20+=-0.126993*layer_1_20;
layer_2_20+=0.457254*layer_1_21;
layer_2_20+=-0.572709*layer_1_22;
layer_2_20+=0.689696*layer_1_23;
layer_2_20+=0.125698*layer_1_24;
layer_2_20+=0.181507*layer_1_25;
layer_2_20+=-0.421815*layer_1_26;
layer_2_20+=0.88421*layer_1_27;
layer_2_20+=-0.0971364*layer_1_28;
layer_2_20+=0.463565*layer_1_29;
layer_2_20+=-0.296793*layer_1_30;
layer_2_20=1/(1+exp(-(layer_2_20)));
layer_2_21=0;
layer_2_21+=-1.33415*layer_1_0;
layer_2_21+=-0.3456*layer_1_1;
layer_2_21+=0.176021*layer_1_2;
layer_2_21+=0.097669*layer_1_3;
layer_2_21+=-0.432179*layer_1_4;
layer_2_21+=-1.00447*layer_1_5;
layer_2_21+=-0.594331*layer_1_6;
layer_2_21+=0.161785*layer_1_7;
layer_2_21+=0.568697*layer_1_8;
layer_2_21+=-0.202785*layer_1_9;
layer_2_21+=0.660458*layer_1_10;
layer_2_21+=-0.22409*layer_1_11;
layer_2_21+=-0.00710136*layer_1_12;
layer_2_21+=-0.859815*layer_1_13;
layer_2_21+=0.728677*layer_1_14;
layer_2_21+=0.601213*layer_1_15;
layer_2_21+=-0.116029*layer_1_16;
layer_2_21+=0.392413*layer_1_17;
layer_2_21+=-0.435749*layer_1_18;
layer_2_21+=0.0601321*layer_1_19;
layer_2_21+=-0.0194014*layer_1_20;
layer_2_21+=0.0743347*layer_1_21;
layer_2_21+=-1.0231*layer_1_22;
layer_2_21+=-0.208872*layer_1_23;
layer_2_21+=-0.607913*layer_1_24;
layer_2_21+=0.857728*layer_1_25;
layer_2_21+=0.741351*layer_1_26;
layer_2_21+=1.04412*layer_1_27;
layer_2_21+=0.155472*layer_1_28;
layer_2_21+=0.154152*layer_1_29;
layer_2_21+=-0.847102*layer_1_30;
layer_2_21=1/(1+exp(-(layer_2_21)));
layer_2_22=0;
layer_2_22+=-0.189546*layer_1_0;
layer_2_22+=-0.397209*layer_1_1;
layer_2_22+=-0.0518626*layer_1_2;
layer_2_22+=-0.87639*layer_1_3;
layer_2_22+=0.724354*layer_1_4;
layer_2_22+=-0.431391*layer_1_5;
layer_2_22+=0.529751*layer_1_6;
layer_2_22+=0.818595*layer_1_7;
layer_2_22+=0.146364*layer_1_8;
layer_2_22+=-0.604416*layer_1_9;
layer_2_22+=-0.443485*layer_1_10;
layer_2_22+=0.116019*layer_1_11;
layer_2_22+=0.711611*layer_1_12;
layer_2_22+=-0.537929*layer_1_13;
layer_2_22+=-0.461497*layer_1_14;
layer_2_22+=0.428393*layer_1_15;
layer_2_22+=0.719179*layer_1_16;
layer_2_22+=-0.562863*layer_1_17;
layer_2_22+=-0.677894*layer_1_18;
layer_2_22+=-0.139425*layer_1_19;
layer_2_22+=0.746146*layer_1_20;
layer_2_22+=0.117492*layer_1_21;
layer_2_22+=-0.983709*layer_1_22;
layer_2_22+=0.983158*layer_1_23;
layer_2_22+=-0.921803*layer_1_24;
layer_2_22+=0.230825*layer_1_25;
layer_2_22+=-0.499184*layer_1_26;
layer_2_22+=-0.68624*layer_1_27;
layer_2_22+=-0.826771*layer_1_28;
layer_2_22+=-0.557099*layer_1_29;
layer_2_22+=-0.0102237*layer_1_30;
layer_2_22=1/(1+exp(-(layer_2_22)));
layer_2_23=0;
layer_2_23+=0.968031*layer_1_0;
layer_2_23+=-0.794569*layer_1_1;
layer_2_23+=-0.884186*layer_1_2;
layer_2_23+=-0.691173*layer_1_3;
layer_2_23+=-0.473219*layer_1_4;
layer_2_23+=-0.0564736*layer_1_5;
layer_2_23+=-0.0698694*layer_1_6;
layer_2_23+=-0.229403*layer_1_7;
layer_2_23+=0.833611*layer_1_8;
layer_2_23+=0.181467*layer_1_9;
layer_2_23+=-0.400828*layer_1_10;
layer_2_23+=-0.103354*layer_1_11;
layer_2_23+=-0.276347*layer_1_12;
layer_2_23+=0.651289*layer_1_13;
layer_2_23+=0.0687284*layer_1_14;
layer_2_23+=0.637289*layer_1_15;
layer_2_23+=0.415801*layer_1_16;
layer_2_23+=0.547791*layer_1_17;
layer_2_23+=0.104538*layer_1_18;
layer_2_23+=0.720672*layer_1_19;
layer_2_23+=-0.426972*layer_1_20;
layer_2_23+=0.843287*layer_1_21;
layer_2_23+=-0.508738*layer_1_22;
layer_2_23+=0.775057*layer_1_23;
layer_2_23+=0.35092*layer_1_24;
layer_2_23+=-0.749737*layer_1_25;
layer_2_23+=0.404286*layer_1_26;
layer_2_23+=-0.292228*layer_1_27;
layer_2_23+=-0.708512*layer_1_28;
layer_2_23+=-0.963328*layer_1_29;
layer_2_23+=-0.916745*layer_1_30;
layer_2_23=1/(1+exp(-(layer_2_23)));
layer_2_24=0;
layer_2_24+=-0.169682*layer_1_0;
layer_2_24+=0.668048*layer_1_1;
layer_2_24+=-0.827071*layer_1_2;
layer_2_24+=-0.981216*layer_1_3;
layer_2_24+=-0.654596*layer_1_4;
layer_2_24+=0.543467*layer_1_5;
layer_2_24+=0.502791*layer_1_6;
layer_2_24+=0.492911*layer_1_7;
layer_2_24+=0.235201*layer_1_8;
layer_2_24+=-0.472634*layer_1_9;
layer_2_24+=0.48936*layer_1_10;
layer_2_24+=0.82957*layer_1_11;
layer_2_24+=0.622726*layer_1_12;
layer_2_24+=-0.561795*layer_1_13;
layer_2_24+=-0.119077*layer_1_14;
layer_2_24+=-1.03939*layer_1_15;
layer_2_24+=-0.914534*layer_1_16;
layer_2_24+=-0.959636*layer_1_17;
layer_2_24+=-0.39959*layer_1_18;
layer_2_24+=0.364059*layer_1_19;
layer_2_24+=-0.251664*layer_1_20;
layer_2_24+=-0.674663*layer_1_21;
layer_2_24+=-0.463208*layer_1_22;
layer_2_24+=-0.661157*layer_1_23;
layer_2_24+=0.399846*layer_1_24;
layer_2_24+=-0.739858*layer_1_25;
layer_2_24+=-0.936926*layer_1_26;
layer_2_24+=0.0187605*layer_1_27;
layer_2_24+=-0.400671*layer_1_28;
layer_2_24+=0.573122*layer_1_29;
layer_2_24+=-0.682363*layer_1_30;
layer_2_24=1/(1+exp(-(layer_2_24)));
layer_2_25=0;
layer_2_25+=1.02733*layer_1_0;
layer_2_25+=-0.432963*layer_1_1;
layer_2_25+=-1.06092*layer_1_2;
layer_2_25+=-1.28413*layer_1_3;
layer_2_25+=0.744852*layer_1_4;
layer_2_25+=-0.517336*layer_1_5;
layer_2_25+=0.179131*layer_1_6;
layer_2_25+=-0.331542*layer_1_7;
layer_2_25+=0.151094*layer_1_8;
layer_2_25+=0.280497*layer_1_9;
layer_2_25+=0.874582*layer_1_10;
layer_2_25+=0.791418*layer_1_11;
layer_2_25+=0.852567*layer_1_12;
layer_2_25+=-1.16915*layer_1_13;
layer_2_25+=-0.765371*layer_1_14;
layer_2_25+=0.12321*layer_1_15;
layer_2_25+=0.28119*layer_1_16;
layer_2_25+=0.669197*layer_1_17;
layer_2_25+=-0.995445*layer_1_18;
layer_2_25+=0.749835*layer_1_19;
layer_2_25+=0.591994*layer_1_20;
layer_2_25+=-0.303627*layer_1_21;
layer_2_25+=0.130138*layer_1_22;
layer_2_25+=0.177031*layer_1_23;
layer_2_25+=-0.194654*layer_1_24;
layer_2_25+=-0.440681*layer_1_25;
layer_2_25+=0.701562*layer_1_26;
layer_2_25+=0.547394*layer_1_27;
layer_2_25+=0.403101*layer_1_28;
layer_2_25+=0.194249*layer_1_29;
layer_2_25+=-0.455245*layer_1_30;
layer_2_25=1/(1+exp(-(layer_2_25)));
layer_2_26=0;
layer_2_26+=-0.835458*layer_1_0;
layer_2_26+=-0.649357*layer_1_1;
layer_2_26+=0.101744*layer_1_2;
layer_2_26+=-0.208622*layer_1_3;
layer_2_26+=-0.44183*layer_1_4;
layer_2_26+=-0.650115*layer_1_5;
layer_2_26+=-0.145918*layer_1_6;
layer_2_26+=0.29788*layer_1_7;
layer_2_26+=0.766618*layer_1_8;
layer_2_26+=0.246704*layer_1_9;
layer_2_26+=0.901273*layer_1_10;
layer_2_26+=-0.568289*layer_1_11;
layer_2_26+=-0.102184*layer_1_12;
layer_2_26+=-0.68736*layer_1_13;
layer_2_26+=0.627849*layer_1_14;
layer_2_26+=-0.120533*layer_1_15;
layer_2_26+=-0.530001*layer_1_16;
layer_2_26+=0.0239316*layer_1_17;
layer_2_26+=-0.0169081*layer_1_18;
layer_2_26+=-0.420897*layer_1_19;
layer_2_26+=-0.384997*layer_1_20;
layer_2_26+=-0.700083*layer_1_21;
layer_2_26+=-0.526396*layer_1_22;
layer_2_26+=-0.649162*layer_1_23;
layer_2_26+=0.730105*layer_1_24;
layer_2_26+=0.466527*layer_1_25;
layer_2_26+=0.469449*layer_1_26;
layer_2_26+=0.168041*layer_1_27;
layer_2_26+=0.224673*layer_1_28;
layer_2_26+=-0.510272*layer_1_29;
layer_2_26+=0.533738*layer_1_30;
layer_2_26=1/(1+exp(-(layer_2_26)));
layer_2_27=0;
layer_2_27+=-1.16619*layer_1_0;
layer_2_27+=0.177952*layer_1_1;
layer_2_27+=0.517933*layer_1_2;
layer_2_27+=-0.16424*layer_1_3;
layer_2_27+=-0.939342*layer_1_4;
layer_2_27+=-0.245831*layer_1_5;
layer_2_27+=-1.0258*layer_1_6;
layer_2_27+=0.580567*layer_1_7;
layer_2_27+=0.0443995*layer_1_8;
layer_2_27+=-0.119215*layer_1_9;
layer_2_27+=0.00759572*layer_1_10;
layer_2_27+=0.110932*layer_1_11;
layer_2_27+=0.409623*layer_1_12;
layer_2_27+=0.344063*layer_1_13;
layer_2_27+=0.164428*layer_1_14;
layer_2_27+=0.469067*layer_1_15;
layer_2_27+=0.601382*layer_1_16;
layer_2_27+=-0.696018*layer_1_17;
layer_2_27+=-0.417989*layer_1_18;
layer_2_27+=0.438928*layer_1_19;
layer_2_27+=-1.05873*layer_1_20;
layer_2_27+=-0.202474*layer_1_21;
layer_2_27+=-1.10229*layer_1_22;
layer_2_27+=-0.0207517*layer_1_23;
layer_2_27+=-0.743669*layer_1_24;
layer_2_27+=-0.895197*layer_1_25;
layer_2_27+=-0.607064*layer_1_26;
layer_2_27+=1.00783*layer_1_27;
layer_2_27+=-0.259*layer_1_28;
layer_2_27+=0.148694*layer_1_29;
layer_2_27+=-0.857967*layer_1_30;
layer_2_27=1/(1+exp(-(layer_2_27)));
layer_2_28=0;
layer_2_28+=-0.34478*layer_1_0;
layer_2_28+=0.90814*layer_1_1;
layer_2_28+=0.554326*layer_1_2;
layer_2_28+=-0.578955*layer_1_3;
layer_2_28+=-0.590016*layer_1_4;
layer_2_28+=-0.567342*layer_1_5;
layer_2_28+=-0.921323*layer_1_6;
layer_2_28+=0.931126*layer_1_7;
layer_2_28+=-0.707398*layer_1_8;
layer_2_28+=-0.952498*layer_1_9;
layer_2_28+=-0.622096*layer_1_10;
layer_2_28+=-0.448544*layer_1_11;
layer_2_28+=0.459584*layer_1_12;
layer_2_28+=0.113574*layer_1_13;
layer_2_28+=-1.0621*layer_1_14;
layer_2_28+=-0.510879*layer_1_15;
layer_2_28+=-0.943769*layer_1_16;
layer_2_28+=-0.605881*layer_1_17;
layer_2_28+=-0.0907685*layer_1_18;
layer_2_28+=-0.677757*layer_1_19;
layer_2_28+=0.2186*layer_1_20;
layer_2_28+=-0.807424*layer_1_21;
layer_2_28+=-0.14074*layer_1_22;
layer_2_28+=0.397111*layer_1_23;
layer_2_28+=-0.40901*layer_1_24;
layer_2_28+=-0.898136*layer_1_25;
layer_2_28+=-0.586461*layer_1_26;
layer_2_28+=0.199429*layer_1_27;
layer_2_28+=0.597332*layer_1_28;
layer_2_28+=0.105863*layer_1_29;
layer_2_28+=0.736991*layer_1_30;
layer_2_28=1/(1+exp(-(layer_2_28)));
layer_2_29=0;
layer_2_29+=-1.74746*layer_1_0;
layer_2_29+=-0.146001*layer_1_1;
layer_2_29+=0.578355*layer_1_2;
layer_2_29+=0.56121*layer_1_3;
layer_2_29+=-0.430909*layer_1_4;
layer_2_29+=0.13163*layer_1_5;
layer_2_29+=-0.648231*layer_1_6;
layer_2_29+=-0.893392*layer_1_7;
layer_2_29+=0.32629*layer_1_8;
layer_2_29+=-0.770371*layer_1_9;
layer_2_29+=-1.83438*layer_1_10;
layer_2_29+=-0.618451*layer_1_11;
layer_2_29+=-0.601357*layer_1_12;
layer_2_29+=-0.0958015*layer_1_13;
layer_2_29+=0.45208*layer_1_14;
layer_2_29+=-1.20554*layer_1_15;
layer_2_29+=0.874736*layer_1_16;
layer_2_29+=-0.28321*layer_1_17;
layer_2_29+=0.466214*layer_1_18;
layer_2_29+=-0.933669*layer_1_19;
layer_2_29+=-1.26324*layer_1_20;
layer_2_29+=0.114213*layer_1_21;
layer_2_29+=-0.579337*layer_1_22;
layer_2_29+=-0.262996*layer_1_23;
layer_2_29+=-0.30722*layer_1_24;
layer_2_29+=0.897503*layer_1_25;
layer_2_29+=-0.500194*layer_1_26;
layer_2_29+=0.83138*layer_1_27;
layer_2_29+=-0.519296*layer_1_28;
layer_2_29+=0.694689*layer_1_29;
layer_2_29+=0.330241*layer_1_30;
layer_2_29=1/(1+exp(-(layer_2_29)));
layer_2_30=1;
layer_3_0=0;
layer_3_0+=-0.545364*layer_2_0;
layer_3_0+=-0.354888*layer_2_1;
layer_3_0+=-0.428231*layer_2_2;
layer_3_0+=-0.454038*layer_2_3;
layer_3_0+=-0.405722*layer_2_4;
layer_3_0+=-0.956469*layer_2_5;
layer_3_0+=-0.550689*layer_2_6;
layer_3_0+=-0.799677*layer_2_7;
layer_3_0+=0.390093*layer_2_8;
layer_3_0+=0.323008*layer_2_9;
layer_3_0+=0.58499*layer_2_10;
layer_3_0+=0.416081*layer_2_11;
layer_3_0+=-1.23411*layer_2_12;
layer_3_0+=0.330897*layer_2_13;
layer_3_0+=-0.162244*layer_2_14;
layer_3_0+=1.17213*layer_2_15;
layer_3_0+=-0.301636*layer_2_16;
layer_3_0+=0.923414*layer_2_17;
layer_3_0+=0.500936*layer_2_18;
layer_3_0+=0.147564*layer_2_19;
layer_3_0+=0.60469*layer_2_20;
layer_3_0+=0.533561*layer_2_21;
layer_3_0+=-0.177414*layer_2_22;
layer_3_0+=-0.205623*layer_2_23;
layer_3_0+=0.205566*layer_2_24;
layer_3_0+=-0.640817*layer_2_25;
layer_3_0+=0.0048945*layer_2_26;
layer_3_0+=0.700967*layer_2_27;
layer_3_0+=0.172615*layer_2_28;
layer_3_0+=1.48897*layer_2_29;
layer_3_0+=-0.796136*layer_2_30;
layer_3_0=1/(1+exp(-(layer_3_0)));
layer_3_1=1;
output0=layer_3_0;
Plot(Output0 * 100, _DEFAULT_NAME(), ParamColor( "Color2", colorCycle ), ParamStyle("Style") );
Plot(70, _DEFAULT_NAME(), colorWhite, styleDashed);
Plot(30, _DEFAULT_NAME(), colorWhite, styleDashed);
_SECTION_END();
_SECTION_BEGIN("RSI");
SetChartOptions(0,0,chartGrid30|chartGrid70);
periods = Param( "Periods", 15, 1, 200, 1 );
Plot( RSI( periods), _DEFAULT_NAME(), ParamColor( "Color", colorCycle ), ParamStyle("Style") );
_SECTION_END();
Yellow RSI – This is the 14 day neural network powered predictive RSI. It is both smooth and has slightly less lag.
Yellow RSI – This is the 14 day neural network powered predictive RSI. It is both smooth and has slightly less lag.
Red – Standard 14 day RSI included with Amibroker.
Anyway, it will be very helpful if you give .I recommend using thresholds for signal generation and use the optimizer to pick the best levels.
_SECTION_BEGIN("Neural Network Powered Predictive RSI");
input0 = RSIa(WMA(C,2), 14) / 100;
input1 = Ref(RSIa(WMA(C,2),14) / 100, -1);
input2 = Ref(RSIa(WMA(C,2),14) / 100, -2);
input3 = Ref(RSIa(WMA(C,2),14) / 100, -3);
input4 = Ref(RSIa(WMA(C,2),14) / 100, -4);
input5 = Ref(RSIa(WMA(C,2),14) / 100, -5);
input6 = Ref(RSIa(WMA(C,2),14) / 100, -6);
input7 = Ref(RSIa(WMA(C,2),14) / 100, -7);
input8 = Ref(RSIa(WMA(C,2),14) / 100, -8);
input9 = Ref(RSIa(WMA(C,2),14) / 100, -9);
input10 = Ref(RSIa(WMA(C,2),14) / 100, -10);
input11 = Ref(RSIa(WMA(C,2),14) / 100, -11);
input12 = Ref(RSIa(WMA(C,2),14) / 100, -12);
input13 = Ref(RSIa(WMA(C,2),14) / 100, -13);
input14 = Ref(RSIa(WMA(C,2),14) / 100, -14);
// Inputs: 15
// Outputs: 1
// Number of neurons per layer: 15 30 30 1
layer_0_0=input0;
layer_0_1=input1;
layer_0_2=input2;
layer_0_3=input3;
layer_0_4=input4;
layer_0_5=input5;
layer_0_6=input6;
layer_0_7=input7;
layer_0_8=input8;
layer_0_9=input9;
layer_0_10=input10;
layer_0_11=input11;
layer_0_12=input12;
layer_0_13=input13;
layer_0_14=input14;
layer_0_15=1;
layer_1_0=0;
layer_1_0+=-2.88435*layer_0_0;
layer_1_0+=-0.145236*layer_0_1;
layer_1_0+=-0.534725*layer_0_2;
layer_1_0+=0.789156*layer_0_3;
layer_1_0+=0.37235*layer_0_4;
layer_1_0+=0.0205776*layer_0_5;
layer_1_0+=-0.381748*layer_0_6;
layer_1_0+=0.690189*layer_0_7;
layer_1_0+=0.462584*layer_0_8;
layer_1_0+=0.550705*layer_0_9;
layer_1_0+=-0.0897613*layer_0_10;
layer_1_0+=1.68387*layer_0_11;
layer_1_0+=0.81285*layer_0_12;
layer_1_0+=0.0114404*layer_0_13;
layer_1_0+=-0.616755*layer_0_14;
layer_1_0+=-0.970031*layer_0_15;
layer_1_0=1/(1+exp(-(layer_1_0)));
layer_1_1=0;
layer_1_1+=-0.903264*layer_0_0;
layer_1_1+=-0.154737*layer_0_1;
layer_1_1+=-0.518103*layer_0_2;
layer_1_1+=-0.450383*layer_0_3;
layer_1_1+=1.16274*layer_0_4;
layer_1_1+=0.0178886*layer_0_5;
layer_1_1+=-0.709718*layer_0_6;
layer_1_1+=-0.983224*layer_0_7;
layer_1_1+=-1.00045*layer_0_8;
layer_1_1+=-0.234438*layer_0_9;
layer_1_1+=0.188592*layer_0_10;
layer_1_1+=0.347817*layer_0_11;
layer_1_1+=0.27297*layer_0_12;
layer_1_1+=0.187848*layer_0_13;
layer_1_1+=-0.733464*layer_0_14;
layer_1_1+=0.32609*layer_0_15;
layer_1_1=1/(1+exp(-(layer_1_1)));
layer_1_2=0;
layer_1_2+=0.425857*layer_0_0;
layer_1_2+=-0.0545361*layer_0_1;
layer_1_2+=-0.839478*layer_0_2;
layer_1_2+=0.197721*layer_0_3;
layer_1_2+=0.513901*layer_0_4;
layer_1_2+=0.597538*layer_0_5;
layer_1_2+=0.0553949*layer_0_6;
layer_1_2+=-0.423691*layer_0_7;
layer_1_2+=0.711133*layer_0_8;
layer_1_2+=0.369812*layer_0_9;
layer_1_2+=0.863078*layer_0_10;
layer_1_2+=0.531257*layer_0_11;
layer_1_2+=-0.16782*layer_0_12;
layer_1_2+=-0.827118*layer_0_13;
layer_1_2+=-0.0849719*layer_0_14;
layer_1_2+=-0.529344*layer_0_15;
layer_1_2=1/(1+exp(-(layer_1_2)));
layer_1_3=0;
layer_1_3+=3.17982*layer_0_0;
layer_1_3+=-0.130061*layer_0_1;
layer_1_3+=0.566761*layer_0_2;
layer_1_3+=0.543639*layer_0_3;
layer_1_3+=0.828445*layer_0_4;
layer_1_3+=0.940563*layer_0_5;
layer_1_3+=0.386646*layer_0_6;
layer_1_3+=-0.0438978*layer_0_7;
layer_1_3+=-0.279062*layer_0_8;
layer_1_3+=-0.417633*layer_0_9;
layer_1_3+=-0.106243*layer_0_10;
layer_1_3+=-2.39544*layer_0_11;
layer_1_3+=-0.875962*layer_0_12;
layer_1_3+=-0.900501*layer_0_13;
layer_1_3+=0.467462*layer_0_14;
layer_1_3+=-0.88757*layer_0_15;
layer_1_3=1/(1+exp(-(layer_1_3)));
layer_1_4=0;
layer_1_4+=-1.89172*layer_0_0;
layer_1_4+=0.498219*layer_0_1;
layer_1_4+=-0.61157*layer_0_2;
layer_1_4+=-0.503196*layer_0_3;
layer_1_4+=0.155329*layer_0_4;
layer_1_4+=0.307746*layer_0_5;
layer_1_4+=0.545425*layer_0_6;
layer_1_4+=0.289903*layer_0_7;
layer_1_4+=-0.232912*layer_0_8;
layer_1_4+=-0.71927*layer_0_9;
layer_1_4+=0.546993*layer_0_10;
layer_1_4+=0.151946*layer_0_11;
layer_1_4+=-0.0816937*layer_0_12;
layer_1_4+=0.750704*layer_0_13;
layer_1_4+=0.313496*layer_0_14;
layer_1_4+=-0.783441*layer_0_15;
layer_1_4=1/(1+exp(-(layer_1_4)));
layer_1_5=0;
layer_1_5+=0.770903*layer_0_0;
layer_1_5+=-0.0255909*layer_0_1;
layer_1_5+=0.514466*layer_0_2;
layer_1_5+=0.145412*layer_0_3;
layer_1_5+=0.0845064*layer_0_4;
layer_1_5+=-0.325864*layer_0_5;
layer_1_5+=-0.723029*layer_0_6;
layer_1_5+=-0.558141*layer_0_7;
layer_1_5+=-0.144106*layer_0_8;
layer_1_5+=0.51629*layer_0_9;
layer_1_5+=-0.219432*layer_0_10;
layer_1_5+=0.537568*layer_0_11;
layer_1_5+=0.234406*layer_0_12;
layer_1_5+=-0.460231*layer_0_13;
layer_1_5+=-0.744961*layer_0_14;
layer_1_5+=0.314615*layer_0_15;
layer_1_5=1/(1+exp(-(layer_1_5)));
layer_1_6=0;
layer_1_6+=-1.44237*layer_0_0;
layer_1_6+=-1.32595*layer_0_1;
layer_1_6+=0.289984*layer_0_2;
layer_1_6+=0.080613*layer_0_3;
layer_1_6+=-0.597297*layer_0_4;
layer_1_6+=0.889638*layer_0_5;
layer_1_6+=-0.834188*layer_0_6;
layer_1_6+=0.618955*layer_0_7;
layer_1_6+=0.169358*layer_0_8;
layer_1_6+=-0.532156*layer_0_9;
layer_1_6+=0.0204259*layer_0_10;
layer_1_6+=-0.377116*layer_0_11;
layer_1_6+=1.07539*layer_0_12;
layer_1_6+=0.235961*layer_0_13;
layer_1_6+=-0.921645*layer_0_14;
layer_1_6+=0.754509*layer_0_15;
layer_1_6=1/(1+exp(-(layer_1_6)));
layer_1_7=0;
layer_1_7+=-0.0259139*layer_0_0;
layer_1_7+=-0.214827*layer_0_1;
layer_1_7+=-0.865682*layer_0_2;
layer_1_7+=-0.799841*layer_0_3;
layer_1_7+=0.480079*layer_0_4;
layer_1_7+=-0.21696*layer_0_5;
layer_1_7+=-0.885368*layer_0_6;
layer_1_7+=-0.215824*layer_0_7;
layer_1_7+=0.229027*layer_0_8;
layer_1_7+=-0.38516*layer_0_9;
layer_1_7+=-0.544635*layer_0_10;
layer_1_7+=0.165535*layer_0_11;
layer_1_7+=0.268931*layer_0_12;
layer_1_7+=0.331209*layer_0_13;
layer_1_7+=0.220778*layer_0_14;
layer_1_7+=-0.0494095*layer_0_15;
layer_1_7=1/(1+exp(-(layer_1_7)));
layer_1_8=0;
layer_1_8+=-1.12635*layer_0_0;
layer_1_8+=-0.364252*layer_0_1;
layer_1_8+=0.659002*layer_0_2;
layer_1_8+=-0.932187*layer_0_3;
layer_1_8+=0.033663*layer_0_4;
layer_1_8+=0.314746*layer_0_5;
layer_1_8+=-0.210119*layer_0_6;
layer_1_8+=-0.87239*layer_0_7;
layer_1_8+=0.805815*layer_0_8;
layer_1_8+=0.739495*layer_0_9;
layer_1_8+=0.0711537*layer_0_10;
layer_1_8+=-0.313738*layer_0_11;
layer_1_8+=-0.108499*layer_0_12;
layer_1_8+=-0.384008*layer_0_13;
layer_1_8+=0.521549*layer_0_14;
layer_1_8+=-0.366253*layer_0_15;
layer_1_8=1/(1+exp(-(layer_1_8)));
layer_1_9=0;
layer_1_9+=-0.273161*layer_0_0;
layer_1_9+=-0.634045*layer_0_1;
layer_1_9+=0.784507*layer_0_2;
layer_1_9+=-0.585906*layer_0_3;
layer_1_9+=0.312875*layer_0_4;
layer_1_9+=-0.00848212*layer_0_5;
layer_1_9+=-0.733062*layer_0_6;
layer_1_9+=0.394302*layer_0_7;
layer_1_9+=0.546809*layer_0_8;
layer_1_9+=-0.332725*layer_0_9;
layer_1_9+=-0.10253*layer_0_10;
layer_1_9+=0.690906*layer_0_11;
layer_1_9+=-1.03437*layer_0_12;
layer_1_9+=0.903911*layer_0_13;
layer_1_9+=0.0666653*layer_0_14;
layer_1_9+=-0.898984*layer_0_15;
layer_1_9=1/(1+exp(-(layer_1_9)));
layer_1_10=0;
layer_1_10+=-1.39372*layer_0_0;
layer_1_10+=-0.892008*layer_0_1;
layer_1_10+=0.717337*layer_0_2;
layer_1_10+=0.406813*layer_0_3;
layer_1_10+=0.466087*layer_0_4;
layer_1_10+=-0.573686*layer_0_5;
layer_1_10+=0.551955*layer_0_6;
layer_1_10+=-0.847024*layer_0_7;
layer_1_10+=-0.915166*layer_0_8;
layer_1_10+=0.495286*layer_0_9;
layer_1_10+=0.0158536*layer_0_10;
layer_1_10+=1.64612*layer_0_11;
layer_1_10+=-0.127765*layer_0_12;
layer_1_10+=-0.366694*layer_0_13;
layer_1_10+=-0.937793*layer_0_14;
layer_1_10+=0.46617*layer_0_15;
layer_1_10=1/(1+exp(-(layer_1_10)));
layer_1_11=0;
layer_1_11+=0.418511*layer_0_0;
layer_1_11+=0.266565*layer_0_1;
layer_1_11+=0.0981416*layer_0_2;
layer_1_11+=0.423731*layer_0_3;
layer_1_11+=-0.553514*layer_0_4;
layer_1_11+=-0.767241*layer_0_5;
layer_1_11+=-1.04742*layer_0_6;
layer_1_11+=-0.933132*layer_0_7;
layer_1_11+=0.56066*layer_0_8;
layer_1_11+=0.680911*layer_0_9;
layer_1_11+=-0.561735*layer_0_10;
layer_1_11+=-0.729072*layer_0_11;
layer_1_11+=0.120629*layer_0_12;
layer_1_11+=-0.991609*layer_0_13;
layer_1_11+=-0.809376*layer_0_14;
layer_1_11+=-0.0909757*layer_0_15;
layer_1_11=1/(1+exp(-(layer_1_11)));
layer_1_12=0;
layer_1_12+=0.593658*layer_0_0;
layer_1_12+=0.369675*layer_0_1;
layer_1_12+=0.0525513*layer_0_2;
layer_1_12+=-0.924349*layer_0_3;
layer_1_12+=-0.2176*layer_0_4;
layer_1_12+=-0.688463*layer_0_5;
layer_1_12+=0.312557*layer_0_6;
layer_1_12+=-0.513327*layer_0_7;
layer_1_12+=-0.192092*layer_0_8;
layer_1_12+=-0.638935*layer_0_9;
layer_1_12+=-0.0263577*layer_0_10;
layer_1_12+=-0.188109*layer_0_11;
layer_1_12+=0.0418108*layer_0_12;
layer_1_12+=-0.841811*layer_0_13;
layer_1_12+=-0.140042*layer_0_14;
layer_1_12+=0.926084*layer_0_15;
layer_1_12=1/(1+exp(-(layer_1_12)));
layer_1_13=0;
layer_1_13+=1.61517*layer_0_0;
layer_1_13+=1.12503*layer_0_1;
layer_1_13+=-0.684729*layer_0_2;
layer_1_13+=-0.477781*layer_0_3;
layer_1_13+=-0.78421*layer_0_4;
layer_1_13+=0.929248*layer_0_5;
layer_1_13+=-0.00793416*layer_0_6;
layer_1_13+=1.09262*layer_0_7;
layer_1_13+=-0.688324*layer_0_8;
layer_1_13+=0.26576*layer_0_9;
layer_1_13+=-1.12617*layer_0_10;
layer_1_13+=-0.713005*layer_0_11;
layer_1_13+=0.651348*layer_0_12;
layer_1_13+=-0.845942*layer_0_13;
layer_1_13+=1.00273*layer_0_14;
layer_1_13+=-0.419965*layer_0_15;
layer_1_13=1/(1+exp(-(layer_1_13)));
layer_1_14=0;
layer_1_14+=0.287145*layer_0_0;
layer_1_14+=0.971221*layer_0_1;
layer_1_14+=-0.000761534*layer_0_2;
layer_1_14+=-0.495094*layer_0_3;
layer_1_14+=0.345184*layer_0_4;
layer_1_14+=0.316862*layer_0_5;
layer_1_14+=0.04238*layer_0_6;
layer_1_14+=0.0621604*layer_0_7;
layer_1_14+=0.323935*layer_0_8;
layer_1_14+=0.290177*layer_0_9;
layer_1_14+=0.564736*layer_0_10;
layer_1_14+=0.363099*layer_0_11;
layer_1_14+=0.11603*layer_0_12;
layer_1_14+=0.440433*layer_0_13;
layer_1_14+=0.216975*layer_0_14;
layer_1_14+=-0.249733*layer_0_15;
layer_1_14=1/(1+exp(-(layer_1_14)));
layer_1_15=0;
layer_1_15+=-2.10428*layer_0_0;
layer_1_15+=0.101225*layer_0_1;
layer_1_15+=0.00738433*layer_0_2;
layer_1_15+=0.801343*layer_0_3;
layer_1_15+=-0.497012*layer_0_4;
layer_1_15+=-0.719246*layer_0_5;
layer_1_15+=-0.00621969*layer_0_6;
layer_1_15+=0.221463*layer_0_7;
layer_1_15+=-0.0775008*layer_0_8;
layer_1_15+=-0.352613*layer_0_9;
layer_1_15+=0.261261*layer_0_10;
layer_1_15+=-0.269299*layer_0_11;
layer_1_15+=0.679556*layer_0_12;
layer_1_15+=0.142106*layer_0_13;
layer_1_15+=-0.006167*layer_0_14;
layer_1_15+=0.382244*layer_0_15;
layer_1_15=1/(1+exp(-(layer_1_15)));
layer_1_16=0;
layer_1_16+=0.875552*layer_0_0;
layer_1_16+=-0.644606*layer_0_1;
layer_1_16+=0.121054*layer_0_2;
layer_1_16+=0.661668*layer_0_3;
layer_1_16+=0.735625*layer_0_4;
layer_1_16+=0.148831*layer_0_5;
layer_1_16+=0.392036*layer_0_6;
layer_1_16+=-0.947599*layer_0_7;
layer_1_16+=0.301088*layer_0_8;
layer_1_16+=0.890409*layer_0_9;
layer_1_16+=-0.492064*layer_0_10;
layer_1_16+=-0.0739343*layer_0_11;
layer_1_16+=-0.519531*layer_0_12;
layer_1_16+=-0.738508*layer_0_13;
layer_1_16+=-0.837431*layer_0_14;
layer_1_16+=0.73809*layer_0_15;
layer_1_16=1/(1+exp(-(layer_1_16)));
layer_1_17=0;
layer_1_17+=0.750466*layer_0_0;
layer_1_17+=0.448156*layer_0_1;
layer_1_17+=-0.740301*layer_0_2;
layer_1_17+=-0.409457*layer_0_3;
layer_1_17+=-0.904982*layer_0_4;
layer_1_17+=-0.908344*layer_0_5;
layer_1_17+=0.253916*layer_0_6;
layer_1_17+=0.616079*layer_0_7;
layer_1_17+=0.0516886*layer_0_8;
layer_1_17+=-0.156377*layer_0_9;
layer_1_17+=-0.272949*layer_0_10;
layer_1_17+=-0.511105*layer_0_11;
layer_1_17+=-0.160287*layer_0_12;
layer_1_17+=-0.0609143*layer_0_13;
layer_1_17+=-0.74444*layer_0_14;
layer_1_17+=-0.353923*layer_0_15;
layer_1_17=1/(1+exp(-(layer_1_17)));
layer_1_18=0;
layer_1_18+=0.906753*layer_0_0;
layer_1_18+=-0.281661*layer_0_1;
layer_1_18+=0.652132*layer_0_2;
layer_1_18+=0.841439*layer_0_3;
layer_1_18+=0.642466*layer_0_4;
layer_1_18+=0.379875*layer_0_5;
layer_1_18+=-0.447282*layer_0_6;
layer_1_18+=0.875164*layer_0_7;
layer_1_18+=-0.787494*layer_0_8;
layer_1_18+=-0.980044*layer_0_9;
layer_1_18+=0.306662*layer_0_10;
layer_1_18+=-0.299585*layer_0_11;
layer_1_18+=-0.0207446*layer_0_12;
layer_1_18+=0.806397*layer_0_13;
layer_1_18+=-0.894213*layer_0_14;
layer_1_18+=0.751274*layer_0_15;
layer_1_18=1/(1+exp(-(layer_1_18)));
layer_1_19=0;
layer_1_19+=-0.126028*layer_0_0;
layer_1_19+=-0.512895*layer_0_1;
layer_1_19+=-0.963341*layer_0_2;
layer_1_19+=-0.103284*layer_0_3;
layer_1_19+=-0.630508*layer_0_4;
layer_1_19+=-0.523715*layer_0_5;
layer_1_19+=0.713312*layer_0_6;
layer_1_19+=-0.0402641*layer_0_7;
layer_1_19+=0.217654*layer_0_8;
layer_1_19+=-0.844982*layer_0_9;
layer_1_19+=0.0040356*layer_0_10;
layer_1_19+=-0.162105*layer_0_11;
layer_1_19+=0.00426175*layer_0_12;
layer_1_19+=0.518868*layer_0_13;
layer_1_19+=-0.114937*layer_0_14;
layer_1_19+=-0.235267*layer_0_15;
layer_1_19=1/(1+exp(-(layer_1_19)));
layer_1_20=0;
layer_1_20+=-0.854894*layer_0_0;
layer_1_20+=-0.463416*layer_0_1;
layer_1_20+=0.0362671*layer_0_2;
layer_1_20+=-0.30845*layer_0_3;
layer_1_20+=-1.05956*layer_0_4;
layer_1_20+=0.28214*layer_0_5;
layer_1_20+=-0.961139*layer_0_6;
layer_1_20+=0.0364025*layer_0_7;
layer_1_20+=0.499485*layer_0_8;
layer_1_20+=-0.101359*layer_0_9;
layer_1_20+=0.644618*layer_0_10;
layer_1_20+=0.320196*layer_0_11;
layer_1_20+=-0.0990875*layer_0_12;
layer_1_20+=0.472437*layer_0_13;
layer_1_20+=-0.0963745*layer_0_14;
layer_1_20+=-0.285806*layer_0_15;
layer_1_20=1/(1+exp(-(layer_1_20)));
layer_1_21=0;
layer_1_21+=0.52515*layer_0_0;
layer_1_21+=-0.129722*layer_0_1;
layer_1_21+=-1.02951*layer_0_2;
layer_1_21+=-0.627888*layer_0_3;
layer_1_21+=-1.09846*layer_0_4;
layer_1_21+=0.130657*layer_0_5;
layer_1_21+=0.551965*layer_0_6;
layer_1_21+=-0.121823*layer_0_7;
layer_1_21+=-1.28235*layer_0_8;
layer_1_21+=-0.673323*layer_0_9;
layer_1_21+=-1.22674*layer_0_10;
layer_1_21+=-0.0495852*layer_0_11;
layer_1_21+=-1.07125*layer_0_12;
layer_1_21+=0.357936*layer_0_13;
layer_1_21+=0.389939*layer_0_14;
layer_1_21+=0.193762*layer_0_15;
layer_1_21=1/(1+exp(-(layer_1_21)));
layer_1_22=0;
layer_1_22+=-0.120243*layer_0_0;
layer_1_22+=0.463105*layer_0_1;
layer_1_22+=-1.04078*layer_0_2;
layer_1_22+=-0.769921*layer_0_3;
layer_1_22+=0.395665*layer_0_4;
layer_1_22+=0.191727*layer_0_5;
layer_1_22+=-0.629235*layer_0_6;
layer_1_22+=-0.964687*layer_0_7;
layer_1_22+=-0.765652*layer_0_8;
layer_1_22+=0.204211*layer_0_9;
layer_1_22+=-0.248889*layer_0_10;
layer_1_22+=-0.188525*layer_0_11;
layer_1_22+=-0.207455*layer_0_12;
layer_1_22+=0.262314*layer_0_13;
layer_1_22+=0.512949*layer_0_14;
layer_1_22+=0.613758*layer_0_15;
layer_1_22=1/(1+exp(-(layer_1_22)));
layer_1_23=0;
layer_1_23+=0.362496*layer_0_0;
layer_1_23+=0.270681*layer_0_1;
layer_1_23+=0.613959*layer_0_2;
layer_1_23+=0.767016*layer_0_3;
layer_1_23+=-0.745292*layer_0_4;
layer_1_23+=0.256653*layer_0_5;
layer_1_23+=-0.158401*layer_0_6;
layer_1_23+=-0.463869*layer_0_7;
layer_1_23+=-0.674215*layer_0_8;
layer_1_23+=0.728837*layer_0_9;
layer_1_23+=-0.94198*layer_0_10;
layer_1_23+=-0.288384*layer_0_11;
layer_1_23+=0.0943042*layer_0_12;
layer_1_23+=-0.374506*layer_0_13;
layer_1_23+=0.150805*layer_0_14;
layer_1_23+=-0.548875*layer_0_15;
layer_1_23=1/(1+exp(-(layer_1_23)));
layer_1_24=0;
layer_1_24+=-0.739786*layer_0_0;
layer_1_24+=-0.910273*layer_0_1;
layer_1_24+=0.567343*layer_0_2;
layer_1_24+=-0.74397*layer_0_3;
layer_1_24+=-0.432017*layer_0_4;
layer_1_24+=0.559987*layer_0_5;
layer_1_24+=0.746891*layer_0_6;
layer_1_24+=0.50889*layer_0_7;
layer_1_24+=0.410383*layer_0_8;
layer_1_24+=0.17624*layer_0_9;
layer_1_24+=-0.21404*layer_0_10;
layer_1_24+=0.835597*layer_0_11;
layer_1_24+=-0.487522*layer_0_12;
layer_1_24+=0.698509*layer_0_13;
layer_1_24+=-0.60823*layer_0_14;
layer_1_24+=-0.5009*layer_0_15;
layer_1_24=1/(1+exp(-(layer_1_24)));
layer_1_25=0;
layer_1_25+=0.393369*layer_0_0;
layer_1_25+=1.10675*layer_0_1;
layer_1_25+=-0.827255*layer_0_2;
layer_1_25+=-0.807197*layer_0_3;
layer_1_25+=0.0734063*layer_0_4;
layer_1_25+=-0.112513*layer_0_5;
layer_1_25+=-0.773126*layer_0_6;
layer_1_25+=-0.438859*layer_0_7;
layer_1_25+=0.84362*layer_0_8;
layer_1_25+=-0.494438*layer_0_9;
layer_1_25+=-0.704585*layer_0_10;
layer_1_25+=-0.7954*layer_0_11;
layer_1_25+=0.858835*layer_0_12;
layer_1_25+=-0.796844*layer_0_13;
layer_1_25+=-0.83458*layer_0_14;
layer_1_25+=-0.882565*layer_0_15;
layer_1_25=1/(1+exp(-(layer_1_25)));
layer_1_26=0;
layer_1_26+=-1.35274*layer_0_0;
layer_1_26+=0.319371*layer_0_1;
layer_1_26+=-0.482825*layer_0_2;
layer_1_26+=-0.307182*layer_0_3;
layer_1_26+=0.755155*layer_0_4;
layer_1_26+=0.550271*layer_0_5;
layer_1_26+=-0.0515558*layer_0_6;
layer_1_26+=0.533553*layer_0_7;
layer_1_26+=0.176782*layer_0_8;
layer_1_26+=-0.360845*layer_0_9;
layer_1_26+=-0.396948*layer_0_10;
layer_1_26+=-0.74021*layer_0_11;
layer_1_26+=0.159247*layer_0_12;
layer_1_26+=0.809663*layer_0_13;
layer_1_26+=-0.364676*layer_0_14;
layer_1_26+=-0.517808*layer_0_15;
layer_1_26=1/(1+exp(-(layer_1_26)));
layer_1_27=0;
layer_1_27+=1.8668*layer_0_0;
layer_1_27+=-0.000391038*layer_0_1;
layer_1_27+=0.481791*layer_0_2;
layer_1_27+=0.737155*layer_0_3;
layer_1_27+=-0.394715*layer_0_4;
layer_1_27+=0.712461*layer_0_5;
layer_1_27+=-0.988611*layer_0_6;
layer_1_27+=0.932892*layer_0_7;
layer_1_27+=0.268788*layer_0_8;
layer_1_27+=0.560095*layer_0_9;
layer_1_27+=-0.0859674*layer_0_10;
layer_1_27+=-1.47148*layer_0_11;
layer_1_27+=-0.866604*layer_0_12;
layer_1_27+=-0.333607*layer_0_13;
layer_1_27+=-0.980961*layer_0_14;
layer_1_27+=-0.164159*layer_0_15;
layer_1_27=1/(1+exp(-(layer_1_27)));
layer_1_28=0;
layer_1_28+=-0.457755*layer_0_0;
layer_1_28+=0.400685*layer_0_1;
layer_1_28+=0.665267*layer_0_2;
layer_1_28+=-0.94255*layer_0_3;
layer_1_28+=0.546915*layer_0_4;
layer_1_28+=0.287815*layer_0_5;
layer_1_28+=0.393195*layer_0_6;
layer_1_28+=0.624391*layer_0_7;
layer_1_28+=0.0897287*layer_0_8;
layer_1_28+=0.34078*layer_0_9;
layer_1_28+=-0.868986*layer_0_10;
layer_1_28+=0.137259*layer_0_11;
layer_1_28+=0.309867*layer_0_12;
layer_1_28+=0.512881*layer_0_13;
layer_1_28+=-0.929729*layer_0_14;
layer_1_28+=0.737358*layer_0_15;
layer_1_28=1/(1+exp(-(layer_1_28)));
layer_1_29=0;
layer_1_29+=0.0816112*layer_0_0;
layer_1_29+=0.262341*layer_0_1;
layer_1_29+=-0.974961*layer_0_2;
layer_1_29+=-0.027541*layer_0_3;
layer_1_29+=0.768947*layer_0_4;
layer_1_29+=-0.990206*layer_0_5;
layer_1_29+=-0.56637*layer_0_6;
layer_1_29+=-0.830815*layer_0_7;
layer_1_29+=0.828238*layer_0_8;
layer_1_29+=0.108372*layer_0_9;
layer_1_29+=-0.525302*layer_0_10;
layer_1_29+=0.722576*layer_0_11;
layer_1_29+=-0.402592*layer_0_12;
layer_1_29+=0.248073*layer_0_13;
layer_1_29+=-0.716658*layer_0_14;
layer_1_29+=-0.688162*layer_0_15;
layer_1_29=1/(1+exp(-(layer_1_29)));
layer_1_30=1;
layer_2_0=0;
layer_2_0+=-0.360461*layer_1_0;
layer_2_0+=0.209585*layer_1_1;
layer_2_0+=0.74828*layer_1_2;
layer_2_0+=-1.07007*layer_1_3;
layer_2_0+=0.880519*layer_1_4;
layer_2_0+=-0.127053*layer_1_5;
layer_2_0+=-0.7654*layer_1_6;
layer_2_0+=0.523181*layer_1_7;
layer_2_0+=-0.565279*layer_1_8;
layer_2_0+=0.92912*layer_1_9;
layer_2_0+=0.667298*layer_1_10;
layer_2_0+=0.708818*layer_1_11;
layer_2_0+=-0.594045*layer_1_12;
layer_2_0+=-0.259896*layer_1_13;
layer_2_0+=-1.03075*layer_1_14;
layer_2_0+=0.556955*layer_1_15;
layer_2_0+=-0.881482*layer_1_16;
layer_2_0+=-0.230645*layer_1_17;
layer_2_0+=-0.430165*layer_1_18;
layer_2_0+=1.01152*layer_1_19;
layer_2_0+=-0.922628*layer_1_20;
layer_2_0+=-0.533118*layer_1_21;
layer_2_0+=-0.631844*layer_1_22;
layer_2_0+=-0.561318*layer_1_23;
layer_2_0+=-0.703253*layer_1_24;
layer_2_0+=0.240481*layer_1_25;
layer_2_0+=0.648842*layer_1_26;
layer_2_0+=0.746091*layer_1_27;
layer_2_0+=-0.633766*layer_1_28;
layer_2_0+=0.553323*layer_1_29;
layer_2_0+=0.291116*layer_1_30;
layer_2_0=1/(1+exp(-(layer_2_0)));
layer_2_1=0;
layer_2_1+=0.414386*layer_1_0;
layer_2_1+=0.948791*layer_1_1;
layer_2_1+=-0.114337*layer_1_2;
layer_2_1+=0.531647*layer_1_3;
layer_2_1+=0.341233*layer_1_4;
layer_2_1+=-0.70561*layer_1_5;
layer_2_1+=0.291443*layer_1_6;
layer_2_1+=0.129484*layer_1_7;
layer_2_1+=-0.12803*layer_1_8;
layer_2_1+=0.858183*layer_1_9;
layer_2_1+=0.156355*layer_1_10;
layer_2_1+=0.116072*layer_1_11;
layer_2_1+=0.0588867*layer_1_12;
layer_2_1+=-0.702125*layer_1_13;
layer_2_1+=-0.236206*layer_1_14;
layer_2_1+=-0.277732*layer_1_15;
layer_2_1+=-1.06278*layer_1_16;
layer_2_1+=0.549476*layer_1_17;
layer_2_1+=-0.736565*layer_1_18;
layer_2_1+=-0.849333*layer_1_19;
layer_2_1+=-0.229584*layer_1_20;
layer_2_1+=0.147459*layer_1_21;
layer_2_1+=-0.864282*layer_1_22;
layer_2_1+=-0.687914*layer_1_23;
layer_2_1+=-0.706116*layer_1_24;
layer_2_1+=0.289177*layer_1_25;
layer_2_1+=-0.217216*layer_1_26;
layer_2_1+=0.0221003*layer_1_27;
layer_2_1+=0.353177*layer_1_28;
layer_2_1+=-0.12094*layer_1_29;
layer_2_1+=0.368938*layer_1_30;
layer_2_1=1/(1+exp(-(layer_2_1)));
layer_2_2=0;
layer_2_2+=-0.105642*layer_1_0;
layer_2_2+=0.787375*layer_1_1;
layer_2_2+=-0.0539234*layer_1_2;
layer_2_2+=-1.25291*layer_1_3;
layer_2_2+=0.900856*layer_1_4;
layer_2_2+=0.539005*layer_1_5;
layer_2_2+=-0.235025*layer_1_6;
layer_2_2+=0.794267*layer_1_7;
layer_2_2+=-0.699339*layer_1_8;
layer_2_2+=0.597305*layer_1_9;
layer_2_2+=0.175169*layer_1_10;
layer_2_2+=-0.206331*layer_1_11;
layer_2_2+=0.085381*layer_1_12;
layer_2_2+=-0.0905111*layer_1_13;
layer_2_2+=-1.194*layer_1_14;
layer_2_2+=-0.512318*layer_1_15;
layer_2_2+=-0.830135*layer_1_16;
layer_2_2+=-0.324545*layer_1_17;
layer_2_2+=0.411533*layer_1_18;
layer_2_2+=0.330762*layer_1_19;
layer_2_2+=0.324019*layer_1_20;
layer_2_2+=0.663648*layer_1_21;
layer_2_2+=-0.268886*layer_1_22;
layer_2_2+=-0.408682*layer_1_23;
layer_2_2+=0.698212*layer_1_24;
layer_2_2+=-0.417176*layer_1_25;
layer_2_2+=-0.462567*layer_1_26;
layer_2_2+=-0.220788*layer_1_27;
layer_2_2+=-0.593278*layer_1_28;
layer_2_2+=0.397824*layer_1_29;
layer_2_2+=0.490707*layer_1_30;
layer_2_2=1/(1+exp(-(layer_2_2)));
layer_2_3=0;
layer_2_3+=0.520544*layer_1_0;
layer_2_3+=0.526604*layer_1_1;
layer_2_3+=-0.762685*layer_1_2;
layer_2_3+=-0.680237*layer_1_3;
layer_2_3+=-0.435506*layer_1_4;
layer_2_3+=0.357005*layer_1_5;
layer_2_3+=0.833703*layer_1_6;
layer_2_3+=-0.299856*layer_1_7;
layer_2_3+=0.0388757*layer_1_8;
layer_2_3+=-0.815986*layer_1_9;
layer_2_3+=0.8702*layer_1_10;
layer_2_3+=-0.600201*layer_1_11;
layer_2_3+=0.0165282*layer_1_12;
layer_2_3+=0.292008*layer_1_13;
layer_2_3+=-0.18807*layer_1_14;
layer_2_3+=0.394491*layer_1_15;
layer_2_3+=-0.850996*layer_1_16;
layer_2_3+=-0.866031*layer_1_17;
layer_2_3+=-0.893057*layer_1_18;
layer_2_3+=-0.967646*layer_1_19;
layer_2_3+=-0.305111*layer_1_20;
layer_2_3+=-0.414503*layer_1_21;
layer_2_3+=0.371531*layer_1_22;
layer_2_3+=-0.7252*layer_1_23;
layer_2_3+=-0.233107*layer_1_24;
layer_2_3+=-0.867098*layer_1_25;
layer_2_3+=0.319453*layer_1_26;
layer_2_3+=0.390428*layer_1_27;
layer_2_3+=-0.646585*layer_1_28;
layer_2_3+=0.384825*layer_1_29;
layer_2_3+=0.231422*layer_1_30;
layer_2_3=1/(1+exp(-(layer_2_3)));
layer_2_4=0;
layer_2_4+=0.414425*layer_1_0;
layer_2_4+=0.231496*layer_1_1;
layer_2_4+=-0.932583*layer_1_2;
layer_2_4+=-0.230161*layer_1_3;
layer_2_4+=-0.892047*layer_1_4;
layer_2_4+=0.895878*layer_1_5;
layer_2_4+=-0.0666212*layer_1_6;
layer_2_4+=0.851379*layer_1_7;
layer_2_4+=0.478123*layer_1_8;
layer_2_4+=0.0313076*layer_1_9;
layer_2_4+=0.407743*layer_1_10;
layer_2_4+=0.337354*layer_1_11;
layer_2_4+=-0.290608*layer_1_12;
layer_2_4+=-0.395379*layer_1_13;
layer_2_4+=-0.967332*layer_1_14;
layer_2_4+=0.594848*layer_1_15;
layer_2_4+=-0.83653*layer_1_16;
layer_2_4+=-0.930534*layer_1_17;
layer_2_4+=-0.489412*layer_1_18;
layer_2_4+=0.54853*layer_1_19;
layer_2_4+=-0.631391*layer_1_20;
layer_2_4+=-0.400309*layer_1_21;
layer_2_4+=-0.0748118*layer_1_22;
layer_2_4+=-1.07534*layer_1_23;
layer_2_4+=-0.200627*layer_1_24;
layer_2_4+=0.0124488*layer_1_25;
layer_2_4+=0.0462966*layer_1_26;
layer_2_4+=0.341769*layer_1_27;
layer_2_4+=-0.241579*layer_1_28;
layer_2_4+=-0.334957*layer_1_29;
layer_2_4+=0.685293*layer_1_30;
layer_2_4=1/(1+exp(-(layer_2_4)));
layer_2_5=0;
layer_2_5+=1.03016*layer_1_0;
layer_2_5+=0.520765*layer_1_1;
layer_2_5+=0.65785*layer_1_2;
layer_2_5+=-1.74135*layer_1_3;
layer_2_5+=0.174141*layer_1_4;
layer_2_5+=0.547159*layer_1_5;
layer_2_5+=-0.24855*layer_1_6;
layer_2_5+=-0.589863*layer_1_7;
layer_2_5+=-0.480356*layer_1_8;
layer_2_5+=-1.19622*layer_1_9;
layer_2_5+=0.317195*layer_1_10;
layer_2_5+=-0.311582*layer_1_11;
layer_2_5+=-1.09335*layer_1_12;
layer_2_5+=-1.18498*layer_1_13;
layer_2_5+=-0.394131*layer_1_14;
layer_2_5+=0.621542*layer_1_15;
layer_2_5+=0.459999*layer_1_16;
layer_2_5+=-0.290442*layer_1_17;
layer_2_5+=0.0109087*layer_1_18;
layer_2_5+=0.0982616*layer_1_19;
layer_2_5+=0.471182*layer_1_20;
layer_2_5+=0.585773*layer_1_21;
layer_2_5+=0.0739391*layer_1_22;
layer_2_5+=-0.00827993*layer_1_23;
layer_2_5+=-1.06385*layer_1_24;
layer_2_5+=0.562647*layer_1_25;
layer_2_5+=-0.452581*layer_1_26;
layer_2_5+=-0.388933*layer_1_27;
layer_2_5+=-0.274653*layer_1_28;
layer_2_5+=0.0685861*layer_1_29;
layer_2_5+=0.63213*layer_1_30;
layer_2_5=1/(1+exp(-(layer_2_5)));
layer_2_6=0;
layer_2_6+=0.518181*layer_1_0;
layer_2_6+=-0.134896*layer_1_1;
layer_2_6+=-1.21565*layer_1_2;
layer_2_6+=-0.934044*layer_1_3;
layer_2_6+=-0.305191*layer_1_4;
layer_2_6+=-0.717035*layer_1_5;
layer_2_6+=0.524246*layer_1_6;
layer_2_6+=-0.49473*layer_1_7;
layer_2_6+=0.713848*layer_1_8;
layer_2_6+=-0.997537*layer_1_9;
layer_2_6+=0.467984*layer_1_10;
layer_2_6+=0.168859*layer_1_11;
layer_2_6+=0.568716*layer_1_12;
layer_2_6+=-0.936647*layer_1_13;
layer_2_6+=-0.277193*layer_1_14;
layer_2_6+=0.744216*layer_1_15;
layer_2_6+=0.219112*layer_1_16;
layer_2_6+=0.767563*layer_1_17;
layer_2_6+=-1.0385*layer_1_18;
layer_2_6+=0.71627*layer_1_19;
layer_2_6+=0.491294*layer_1_20;
layer_2_6+=0.731034*layer_1_21;
layer_2_6+=0.524213*layer_1_22;
layer_2_6+=0.6263*layer_1_23;
layer_2_6+=0.160717*layer_1_24;
layer_2_6+=-0.668625*layer_1_25;
layer_2_6+=-0.126627*layer_1_26;
layer_2_6+=-0.782071*layer_1_27;
layer_2_6+=-0.829947*layer_1_28;
layer_2_6+=0.390752*layer_1_29;
layer_2_6+=0.57622*layer_1_30;
layer_2_6=1/(1+exp(-(layer_2_6)));
layer_2_7=0;
layer_2_7+=-0.481307*layer_1_0;
layer_2_7+=0.623768*layer_1_1;
layer_2_7+=-0.124461*layer_1_2;
layer_2_7+=-1.14169*layer_1_3;
layer_2_7+=0.689149*layer_1_4;
layer_2_7+=0.663478*layer_1_5;
layer_2_7+=-0.690893*layer_1_6;
layer_2_7+=-0.481194*layer_1_7;
layer_2_7+=0.240699*layer_1_8;
layer_2_7+=-0.123896*layer_1_9;
layer_2_7+=0.619085*layer_1_10;
layer_2_7+=-0.66139*layer_1_11;
layer_2_7+=0.377577*layer_1_12;
layer_2_7+=0.868932*layer_1_13;
layer_2_7+=-1.07908*layer_1_14;
layer_2_7+=0.305165*layer_1_15;
layer_2_7+=0.315567*layer_1_16;
layer_2_7+=-0.737608*layer_1_17;
layer_2_7+=-0.989557*layer_1_18;
layer_2_7+=-0.437672*layer_1_19;
layer_2_7+=0.327419*layer_1_20;
layer_2_7+=0.60587*layer_1_21;
layer_2_7+=0.0642929*layer_1_22;
layer_2_7+=-0.328713*layer_1_23;
layer_2_7+=0.56293*layer_1_24;
layer_2_7+=-0.54394*layer_1_25;
layer_2_7+=0.141403*layer_1_26;
layer_2_7+=-0.686351*layer_1_27;
layer_2_7+=-0.727148*layer_1_28;
layer_2_7+=0.930244*layer_1_29;
layer_2_7+=-0.436506*layer_1_30;
layer_2_7=1/(1+exp(-(layer_2_7)));
layer_2_8=0;
layer_2_8+=-1.07493*layer_1_0;
layer_2_8+=0.428194*layer_1_1;
layer_2_8+=-0.77109*layer_1_2;
layer_2_8+=-0.810575*layer_1_3;
layer_2_8+=-1.0336*layer_1_4;
layer_2_8+=-0.372395*layer_1_5;
layer_2_8+=0.238994*layer_1_6;
layer_2_8+=-0.338715*layer_1_7;
layer_2_8+=-0.251634*layer_1_8;
layer_2_8+=-0.218793*layer_1_9;
layer_2_8+=-0.896257*layer_1_10;
layer_2_8+=0.090219*layer_1_11;
layer_2_8+=0.350133*layer_1_12;
layer_2_8+=-0.282838*layer_1_13;
layer_2_8+=0.229841*layer_1_14;
layer_2_8+=0.726493*layer_1_15;
layer_2_8+=0.046559*layer_1_16;
layer_2_8+=0.140939*layer_1_17;
layer_2_8+=-0.966357*layer_1_18;
layer_2_8+=-0.112692*layer_1_19;
layer_2_8+=-0.528399*layer_1_20;
layer_2_8+=-0.155603*layer_1_21;
layer_2_8+=0.679723*layer_1_22;
layer_2_8+=-0.0264462*layer_1_23;
layer_2_8+=-0.887629*layer_1_24;
layer_2_8+=0.122463*layer_1_25;
layer_2_8+=0.399873*layer_1_26;
layer_2_8+=0.592173*layer_1_27;
layer_2_8+=0.620161*layer_1_28;
layer_2_8+=0.665697*layer_1_29;
layer_2_8+=-0.413984*layer_1_30;
layer_2_8=1/(1+exp(-(layer_2_8)));
layer_2_9=0;
layer_2_9+=0.518309*layer_1_0;
layer_2_9+=0.10487*layer_1_1;
layer_2_9+=0.377541*layer_1_2;
layer_2_9+=0.72233*layer_1_3;
layer_2_9+=0.352956*layer_1_4;
layer_2_9+=0.645303*layer_1_5;
layer_2_9+=0.622508*layer_1_6;
layer_2_9+=0.696844*layer_1_7;
layer_2_9+=-0.129262*layer_1_8;
layer_2_9+=-0.164783*layer_1_9;
layer_2_9+=-0.94045*layer_1_10;
layer_2_9+=-0.300466*layer_1_11;
layer_2_9+=0.539642*layer_1_12;
layer_2_9+=-0.174037*layer_1_13;
layer_2_9+=-0.833996*layer_1_14;
layer_2_9+=-1.15405*layer_1_15;
layer_2_9+=0.243639*layer_1_16;
layer_2_9+=0.523857*layer_1_17;
layer_2_9+=-0.979288*layer_1_18;
layer_2_9+=-0.951623*layer_1_19;
layer_2_9+=-0.365721*layer_1_20;
layer_2_9+=0.34915*layer_1_21;
layer_2_9+=0.490777*layer_1_22;
layer_2_9+=-0.718607*layer_1_23;
layer_2_9+=-0.883571*layer_1_24;
layer_2_9+=-0.925641*layer_1_25;
layer_2_9+=-0.350229*layer_1_26;
layer_2_9+=-0.968843*layer_1_27;
layer_2_9+=0.867401*layer_1_28;
layer_2_9+=0.229597*layer_1_29;
layer_2_9+=-0.892697*layer_1_30;
layer_2_9=1/(1+exp(-(layer_2_9)));
layer_2_10=0;
layer_2_10+=0.389509*layer_1_0;
layer_2_10+=-0.00284077*layer_1_1;
layer_2_10+=-0.238095*layer_1_2;
layer_2_10+=-1.09649*layer_1_3;
layer_2_10+=-0.830579*layer_1_4;
layer_2_10+=-0.300995*layer_1_5;
layer_2_10+=-0.0449177*layer_1_6;
layer_2_10+=0.463795*layer_1_7;
layer_2_10+=-1.20552*layer_1_8;
layer_2_10+=0.568163*layer_1_9;
layer_2_10+=-1.06258*layer_1_10;
layer_2_10+=0.199661*layer_1_11;
layer_2_10+=-0.147282*layer_1_12;
layer_2_10+=0.775319*layer_1_13;
layer_2_10+=-0.452793*layer_1_14;
layer_2_10+=-0.688876*layer_1_15;
layer_2_10+=-0.589081*layer_1_16;
layer_2_10+=0.499935*layer_1_17;
layer_2_10+=-0.545469*layer_1_18;
layer_2_10+=-0.20014*layer_1_19;
layer_2_10+=0.0759415*layer_1_20;
layer_2_10+=-0.841555*layer_1_21;
layer_2_10+=0.759882*layer_1_22;
layer_2_10+=0.341077*layer_1_23;
layer_2_10+=-0.934718*layer_1_24;
layer_2_10+=-0.133118*layer_1_25;
layer_2_10+=0.298355*layer_1_26;
layer_2_10+=0.806895*layer_1_27;
layer_2_10+=0.336181*layer_1_28;
layer_2_10+=0.241289*layer_1_29;
layer_2_10+=0.242409*layer_1_30;
layer_2_10=1/(1+exp(-(layer_2_10)));
layer_2_11=0;
layer_2_11+=0.524337*layer_1_0;
layer_2_11+=0.0773675*layer_1_1;
layer_2_11+=-0.520167*layer_1_2;
layer_2_11+=0.469051*layer_1_3;
layer_2_11+=-0.693429*layer_1_4;
layer_2_11+=0.00747091*layer_1_5;
layer_2_11+=0.147363*layer_1_6;
layer_2_11+=-0.619299*layer_1_7;
layer_2_11+=-0.14519*layer_1_8;
layer_2_11+=-0.0664281*layer_1_9;
layer_2_11+=0.624413*layer_1_10;
layer_2_11+=0.356173*layer_1_11;
layer_2_11+=0.466162*layer_1_12;
layer_2_11+=0.469301*layer_1_13;
layer_2_11+=-0.208324*layer_1_14;
layer_2_11+=0.375513*layer_1_15;
layer_2_11+=0.487799*layer_1_16;
layer_2_11+=1.01006*layer_1_17;
layer_2_11+=-0.658319*layer_1_18;
layer_2_11+=0.107963*layer_1_19;
layer_2_11+=0.657808*layer_1_20;
layer_2_11+=0.195767*layer_1_21;
layer_2_11+=0.705774*layer_1_22;
layer_2_11+=0.0420155*layer_1_23;
layer_2_11+=-0.23564*layer_1_24;
layer_2_11+=-0.115281*layer_1_25;
layer_2_11+=0.74948*layer_1_26;
layer_2_11+=1.0508*layer_1_27;
layer_2_11+=-0.735553*layer_1_28;
layer_2_11+=-0.568619*layer_1_29;
layer_2_11+=-0.593982*layer_1_30;
layer_2_11=1/(1+exp(-(layer_2_11)));
layer_2_12=0;
layer_2_12+=0.793569*layer_1_0;
layer_2_12+=1.17403*layer_1_1;
layer_2_12+=0.364798*layer_1_2;
layer_2_12+=-1.09313*layer_1_3;
layer_2_12+=0.531266*layer_1_4;
layer_2_12+=-0.763163*layer_1_5;
layer_2_12+=0.360784*layer_1_6;
layer_2_12+=0.0792123*layer_1_7;
layer_2_12+=0.107043*layer_1_8;
layer_2_12+=-0.82849*layer_1_9;
layer_2_12+=1.29526*layer_1_10;
layer_2_12+=-0.776481*layer_1_11;
layer_2_12+=0.153676*layer_1_12;
layer_2_12+=-1.18748*layer_1_13;
layer_2_12+=-0.595714*layer_1_14;
layer_2_12+=0.526254*layer_1_15;
layer_2_12+=-0.411218*layer_1_16;
layer_2_12+=-0.456852*layer_1_17;
layer_2_12+=0.310753*layer_1_18;
layer_2_12+=-0.135013*layer_1_19;
layer_2_12+=-0.0641765*layer_1_20;
layer_2_12+=-0.624076*layer_1_21;
layer_2_12+=0.364239*layer_1_22;
layer_2_12+=-0.708557*layer_1_23;
layer_2_12+=0.160462*layer_1_24;
layer_2_12+=0.00579065*layer_1_25;
layer_2_12+=0.528798*layer_1_26;
layer_2_12+=-0.314008*layer_1_27;
layer_2_12+=-0.866941*layer_1_28;
layer_2_12+=-0.251546*layer_1_29;
layer_2_12+=-0.248207*layer_1_30;
layer_2_12=1/(1+exp(-(layer_2_12)));
layer_2_13=0;
layer_2_13+=-0.935475*layer_1_0;
layer_2_13+=0.577332*layer_1_1;
layer_2_13+=0.111856*layer_1_2;
layer_2_13+=0.454911*layer_1_3;
layer_2_13+=0.0750372*layer_1_4;
layer_2_13+=-0.0308225*layer_1_5;
layer_2_13+=-0.202686*layer_1_6;
layer_2_13+=0.262935*layer_1_7;
layer_2_13+=0.30969*layer_1_8;
layer_2_13+=0.628485*layer_1_9;
layer_2_13+=-0.273605*layer_1_10;
layer_2_13+=-0.352063*layer_1_11;
layer_2_13+=-1.01909*layer_1_12;
layer_2_13+=0.550696*layer_1_13;
layer_2_13+=0.190688*layer_1_14;
layer_2_13+=-0.266184*layer_1_15;
layer_2_13+=-1.11583*layer_1_16;
layer_2_13+=0.65652*layer_1_17;
layer_2_13+=0.0397617*layer_1_18;
layer_2_13+=-1.04028*layer_1_19;
layer_2_13+=-0.356533*layer_1_20;
layer_2_13+=0.762891*layer_1_21;
layer_2_13+=-1.05583*layer_1_22;
layer_2_13+=-0.841675*layer_1_23;
layer_2_13+=-0.819832*layer_1_24;
layer_2_13+=-0.800852*layer_1_25;
layer_2_13+=-0.0708593*layer_1_26;
layer_2_13+=-1.02503*layer_1_27;
layer_2_13+=-0.216276*layer_1_28;
layer_2_13+=0.0315307*layer_1_29;
layer_2_13+=0.380596*layer_1_30;
layer_2_13=1/(1+exp(-(layer_2_13)));
layer_2_14=0;
layer_2_14+=0.437081*layer_1_0;
layer_2_14+=0.838557*layer_1_1;
layer_2_14+=0.193945*layer_1_2;
layer_2_14+=-0.616544*layer_1_3;
layer_2_14+=0.539586*layer_1_4;
layer_2_14+=-0.374241*layer_1_5;
layer_2_14+=0.897177*layer_1_6;
layer_2_14+=0.429945*layer_1_7;
layer_2_14+=-0.667664*layer_1_8;
layer_2_14+=-0.73718*layer_1_9;
layer_2_14+=-0.257755*layer_1_10;
layer_2_14+=-0.678867*layer_1_11;
layer_2_14+=0.0619953*layer_1_12;
layer_2_14+=-0.802506*layer_1_13;
layer_2_14+=0.758464*layer_1_14;
layer_2_14+=-0.704873*layer_1_15;
layer_2_14+=-0.404602*layer_1_16;
layer_2_14+=-0.452281*layer_1_17;
layer_2_14+=-0.931252*layer_1_18;
layer_2_14+=-0.675282*layer_1_19;
layer_2_14+=-1.00286*layer_1_20;
layer_2_14+=0.491718*layer_1_21;
layer_2_14+=0.43248*layer_1_22;
layer_2_14+=0.677323*layer_1_23;
layer_2_14+=-1.11536*layer_1_24;
layer_2_14+=-0.114957*layer_1_25;
layer_2_14+=-0.281336*layer_1_26;
layer_2_14+=0.466074*layer_1_27;
layer_2_14+=-0.227164*layer_1_28;
layer_2_14+=-0.0701391*layer_1_29;
layer_2_14+=0.498764*layer_1_30;
layer_2_14=1/(1+exp(-(layer_2_14)));
layer_2_15=0;
layer_2_15+=-1.38523*layer_1_0;
layer_2_15+=-0.538271*layer_1_1;
layer_2_15+=-0.998365*layer_1_2;
layer_2_15+=1.20583*layer_1_3;
layer_2_15+=0.267955*layer_1_4;
layer_2_15+=0.604999*layer_1_5;
layer_2_15+=-1.53097*layer_1_6;
layer_2_15+=-0.171139*layer_1_7;
layer_2_15+=-0.28431*layer_1_8;
layer_2_15+=0.393363*layer_1_9;
layer_2_15+=-0.32627*layer_1_10;
layer_2_15+=-0.538241*layer_1_11;
layer_2_15+=0.566222*layer_1_12;
layer_2_15+=0.708349*layer_1_13;
layer_2_15+=-0.882228*layer_1_14;
layer_2_15+=-0.503978*layer_1_15;
layer_2_15+=-0.913141*layer_1_16;
layer_2_15+=0.0413626*layer_1_17;
layer_2_15+=0.462976*layer_1_18;
layer_2_15+=0.105607*layer_1_19;
layer_2_15+=-1.27749*layer_1_20;
layer_2_15+=0.430397*layer_1_21;
layer_2_15+=-0.149091*layer_1_22;
layer_2_15+=0.69976*layer_1_23;
layer_2_15+=0.43507*layer_1_24;
layer_2_15+=0.533251*layer_1_25;
layer_2_15+=-0.328671*layer_1_26;
layer_2_15+=-0.179847*layer_1_27;
layer_2_15+=-0.163278*layer_1_28;
layer_2_15+=-0.976876*layer_1_29;
layer_2_15+=0.303934*layer_1_30;
layer_2_15=1/(1+exp(-(layer_2_15)));
layer_2_16=0;
layer_2_16+=-0.918896*layer_1_0;
layer_2_16+=0.646697*layer_1_1;
layer_2_16+=0.454604*layer_1_2;
layer_2_16+=-0.838451*layer_1_3;
layer_2_16+=-0.674103*layer_1_4;
layer_2_16+=-0.906382*layer_1_5;
layer_2_16+=0.34749*layer_1_6;
layer_2_16+=-0.958057*layer_1_7;
layer_2_16+=-0.284761*layer_1_8;
layer_2_16+=0.371971*layer_1_9;
layer_2_16+=0.642955*layer_1_10;
layer_2_16+=-0.165229*layer_1_11;
layer_2_16+=0.948875*layer_1_12;
layer_2_16+=0.0573743*layer_1_13;
layer_2_16+=-0.436724*layer_1_14;
layer_2_16+=-0.0370569*layer_1_15;
layer_2_16+=0.610892*layer_1_16;
layer_2_16+=-0.875168*layer_1_17;
layer_2_16+=-0.942319*layer_1_18;
layer_2_16+=-0.714514*layer_1_19;
layer_2_16+=-0.724241*layer_1_20;
layer_2_16+=0.798881*layer_1_21;
layer_2_16+=-0.386796*layer_1_22;
layer_2_16+=-0.335941*layer_1_23;
layer_2_16+=0.591155*layer_1_24;
layer_2_16+=-0.906355*layer_1_25;
layer_2_16+=0.506619*layer_1_26;
layer_2_16+=-0.659451*layer_1_27;
layer_2_16+=0.723363*layer_1_28;
layer_2_16+=-0.494407*layer_1_29;
layer_2_16+=-0.461287*layer_1_30;
layer_2_16=1/(1+exp(-(layer_2_16)));
layer_2_17=0;
layer_2_17+=-1.03823*layer_1_0;
layer_2_17+=-0.874455*layer_1_1;
layer_2_17+=0.279622*layer_1_2;
layer_2_17+=0.831561*layer_1_3;
layer_2_17+=0.493906*layer_1_4;
layer_2_17+=0.23794*layer_1_5;
layer_2_17+=-0.0528871*layer_1_6;
layer_2_17+=-1.16186*layer_1_7;
layer_2_17+=-0.904231*layer_1_8;
layer_2_17+=-0.957919*layer_1_9;
layer_2_17+=-0.63155*layer_1_10;
layer_2_17+=-0.167196*layer_1_11;
layer_2_17+=-0.938665*layer_1_12;
layer_2_17+=0.732555*layer_1_13;
layer_2_17+=-0.245006*layer_1_14;
layer_2_17+=-0.107976*layer_1_15;
layer_2_17+=0.545264*layer_1_16;
layer_2_17+=-0.00150105*layer_1_17;
layer_2_17+=-0.0640357*layer_1_18;
layer_2_17+=0.848832*layer_1_19;
layer_2_17+=0.717506*layer_1_20;
layer_2_17+=0.632171*layer_1_21;
layer_2_17+=0.400886*layer_1_22;
layer_2_17+=-0.818517*layer_1_23;
layer_2_17+=-0.642906*layer_1_24;
layer_2_17+=-0.482206*layer_1_25;
layer_2_17+=-0.892465*layer_1_26;
layer_2_17+=0.893071*layer_1_27;
layer_2_17+=-0.0567846*layer_1_28;
layer_2_17+=0.234591*layer_1_29;
layer_2_17+=-0.938231*layer_1_30;
layer_2_17=1/(1+exp(-(layer_2_17)));
layer_2_18=0;
layer_2_18+=-0.131699*layer_1_0;
layer_2_18+=0.318497*layer_1_1;
layer_2_18+=0.340246*layer_1_2;
layer_2_18+=0.658336*layer_1_3;
layer_2_18+=-1.03216*layer_1_4;
layer_2_18+=0.384061*layer_1_5;
layer_2_18+=-0.563154*layer_1_6;
layer_2_18+=0.127772*layer_1_7;
layer_2_18+=0.59173*layer_1_8;
layer_2_18+=0.727657*layer_1_9;
layer_2_18+=-1.26672*layer_1_10;
layer_2_18+=0.52159*layer_1_11;
layer_2_18+=-0.306006*layer_1_12;
layer_2_18+=-1.07646*layer_1_13;
layer_2_18+=-0.844367*layer_1_14;
layer_2_18+=-0.425977*layer_1_15;
layer_2_18+=-0.785529*layer_1_16;
layer_2_18+=0.778698*layer_1_17;
layer_2_18+=-0.117601*layer_1_18;
layer_2_18+=-0.672039*layer_1_19;
layer_2_18+=0.357325*layer_1_20;
layer_2_18+=0.780441*layer_1_21;
layer_2_18+=-0.787072*layer_1_22;
layer_2_18+=-1.03478*layer_1_23;
layer_2_18+=0.310441*layer_1_24;
layer_2_18+=-0.586746*layer_1_25;
layer_2_18+=0.0634134*layer_1_26;
layer_2_18+=0.535679*layer_1_27;
layer_2_18+=0.605757*layer_1_28;
layer_2_18+=-0.374192*layer_1_29;
layer_2_18+=0.0778527*layer_1_30;
layer_2_18=1/(1+exp(-(layer_2_18)));
layer_2_19=0;
layer_2_19+=0.835987*layer_1_0;
layer_2_19+=0.611523*layer_1_1;
layer_2_19+=0.124802*layer_1_2;
layer_2_19+=-0.551505*layer_1_3;
layer_2_19+=0.463565*layer_1_4;
layer_2_19+=-0.421994*layer_1_5;
layer_2_19+=-0.441741*layer_1_6;
layer_2_19+=-1.06716*layer_1_7;
layer_2_19+=-0.0320862*layer_1_8;
layer_2_19+=-0.324931*layer_1_9;
layer_2_19+=-0.888618*layer_1_10;
layer_2_19+=-0.370432*layer_1_11;
layer_2_19+=0.670944*layer_1_12;
layer_2_19+=-0.631653*layer_1_13;
layer_2_19+=0.677061*layer_1_14;
layer_2_19+=-0.900227*layer_1_15;
layer_2_19+=0.621488*layer_1_16;
layer_2_19+=0.750188*layer_1_17;
layer_2_19+=-0.265956*layer_1_18;
layer_2_19+=-0.665917*layer_1_19;
layer_2_19+=0.140073*layer_1_20;
layer_2_19+=0.0409273*layer_1_21;
layer_2_19+=0.128675*layer_1_22;
layer_2_19+=-0.172711*layer_1_23;
layer_2_19+=-1.12296*layer_1_24;
layer_2_19+=0.708826*layer_1_25;
layer_2_19+=-0.742522*layer_1_26;
layer_2_19+=-0.506713*layer_1_27;
layer_2_19+=-0.606313*layer_1_28;
layer_2_19+=0.284887*layer_1_29;
layer_2_19+=0.122898*layer_1_30;
layer_2_19=1/(1+exp(-(layer_2_19)));
layer_2_20=0;
layer_2_20+=0.471093*layer_1_0;
layer_2_20+=-0.151355*layer_1_1;
layer_2_20+=0.524971*layer_1_2;
layer_2_20+=0.249567*layer_1_3;
layer_2_20+=0.340268*layer_1_4;
layer_2_20+=0.414255*layer_1_5;
layer_2_20+=-0.999903*layer_1_6;
layer_2_20+=-0.0399986*layer_1_7;
layer_2_20+=-1.21*layer_1_8;
layer_2_20+=-0.993102*layer_1_9;
layer_2_20+=0.246772*layer_1_10;
layer_2_20+=-0.297423*layer_1_11;
layer_2_20+=0.766717*layer_1_12;
layer_2_20+=0.15572*layer_1_13;
layer_2_20+=0.470859*layer_1_14;
layer_2_20+=-1.10197*layer_1_15;
layer_2_20+=0.251672*layer_1_16;
layer_2_20+=-0.902293*layer_1_17;
layer_2_20+=0.343991*layer_1_18;
layer_2_20+=0.797213*layer_1_19;
layer_2_20+=-0.126993*layer_1_20;
layer_2_20+=0.457254*layer_1_21;
layer_2_20+=-0.572709*layer_1_22;
layer_2_20+=0.689696*layer_1_23;
layer_2_20+=0.125698*layer_1_24;
layer_2_20+=0.181507*layer_1_25;
layer_2_20+=-0.421815*layer_1_26;
layer_2_20+=0.88421*layer_1_27;
layer_2_20+=-0.0971364*layer_1_28;
layer_2_20+=0.463565*layer_1_29;
layer_2_20+=-0.296793*layer_1_30;
layer_2_20=1/(1+exp(-(layer_2_20)));
layer_2_21=0;
layer_2_21+=-1.33415*layer_1_0;
layer_2_21+=-0.3456*layer_1_1;
layer_2_21+=0.176021*layer_1_2;
layer_2_21+=0.097669*layer_1_3;
layer_2_21+=-0.432179*layer_1_4;
layer_2_21+=-1.00447*layer_1_5;
layer_2_21+=-0.594331*layer_1_6;
layer_2_21+=0.161785*layer_1_7;
layer_2_21+=0.568697*layer_1_8;
layer_2_21+=-0.202785*layer_1_9;
layer_2_21+=0.660458*layer_1_10;
layer_2_21+=-0.22409*layer_1_11;
layer_2_21+=-0.00710136*layer_1_12;
layer_2_21+=-0.859815*layer_1_13;
layer_2_21+=0.728677*layer_1_14;
layer_2_21+=0.601213*layer_1_15;
layer_2_21+=-0.116029*layer_1_16;
layer_2_21+=0.392413*layer_1_17;
layer_2_21+=-0.435749*layer_1_18;
layer_2_21+=0.0601321*layer_1_19;
layer_2_21+=-0.0194014*layer_1_20;
layer_2_21+=0.0743347*layer_1_21;
layer_2_21+=-1.0231*layer_1_22;
layer_2_21+=-0.208872*layer_1_23;
layer_2_21+=-0.607913*layer_1_24;
layer_2_21+=0.857728*layer_1_25;
layer_2_21+=0.741351*layer_1_26;
layer_2_21+=1.04412*layer_1_27;
layer_2_21+=0.155472*layer_1_28;
layer_2_21+=0.154152*layer_1_29;
layer_2_21+=-0.847102*layer_1_30;
layer_2_21=1/(1+exp(-(layer_2_21)));
layer_2_22=0;
layer_2_22+=-0.189546*layer_1_0;
layer_2_22+=-0.397209*layer_1_1;
layer_2_22+=-0.0518626*layer_1_2;
layer_2_22+=-0.87639*layer_1_3;
layer_2_22+=0.724354*layer_1_4;
layer_2_22+=-0.431391*layer_1_5;
layer_2_22+=0.529751*layer_1_6;
layer_2_22+=0.818595*layer_1_7;
layer_2_22+=0.146364*layer_1_8;
layer_2_22+=-0.604416*layer_1_9;
layer_2_22+=-0.443485*layer_1_10;
layer_2_22+=0.116019*layer_1_11;
layer_2_22+=0.711611*layer_1_12;
layer_2_22+=-0.537929*layer_1_13;
layer_2_22+=-0.461497*layer_1_14;
layer_2_22+=0.428393*layer_1_15;
layer_2_22+=0.719179*layer_1_16;
layer_2_22+=-0.562863*layer_1_17;
layer_2_22+=-0.677894*layer_1_18;
layer_2_22+=-0.139425*layer_1_19;
layer_2_22+=0.746146*layer_1_20;
layer_2_22+=0.117492*layer_1_21;
layer_2_22+=-0.983709*layer_1_22;
layer_2_22+=0.983158*layer_1_23;
layer_2_22+=-0.921803*layer_1_24;
layer_2_22+=0.230825*layer_1_25;
layer_2_22+=-0.499184*layer_1_26;
layer_2_22+=-0.68624*layer_1_27;
layer_2_22+=-0.826771*layer_1_28;
layer_2_22+=-0.557099*layer_1_29;
layer_2_22+=-0.0102237*layer_1_30;
layer_2_22=1/(1+exp(-(layer_2_22)));
layer_2_23=0;
layer_2_23+=0.968031*layer_1_0;
layer_2_23+=-0.794569*layer_1_1;
layer_2_23+=-0.884186*layer_1_2;
layer_2_23+=-0.691173*layer_1_3;
layer_2_23+=-0.473219*layer_1_4;
layer_2_23+=-0.0564736*layer_1_5;
layer_2_23+=-0.0698694*layer_1_6;
layer_2_23+=-0.229403*layer_1_7;
layer_2_23+=0.833611*layer_1_8;
layer_2_23+=0.181467*layer_1_9;
layer_2_23+=-0.400828*layer_1_10;
layer_2_23+=-0.103354*layer_1_11;
layer_2_23+=-0.276347*layer_1_12;
layer_2_23+=0.651289*layer_1_13;
layer_2_23+=0.0687284*layer_1_14;
layer_2_23+=0.637289*layer_1_15;
layer_2_23+=0.415801*layer_1_16;
layer_2_23+=0.547791*layer_1_17;
layer_2_23+=0.104538*layer_1_18;
layer_2_23+=0.720672*layer_1_19;
layer_2_23+=-0.426972*layer_1_20;
layer_2_23+=0.843287*layer_1_21;
layer_2_23+=-0.508738*layer_1_22;
layer_2_23+=0.775057*layer_1_23;
layer_2_23+=0.35092*layer_1_24;
layer_2_23+=-0.749737*layer_1_25;
layer_2_23+=0.404286*layer_1_26;
layer_2_23+=-0.292228*layer_1_27;
layer_2_23+=-0.708512*layer_1_28;
layer_2_23+=-0.963328*layer_1_29;
layer_2_23+=-0.916745*layer_1_30;
layer_2_23=1/(1+exp(-(layer_2_23)));
layer_2_24=0;
layer_2_24+=-0.169682*layer_1_0;
layer_2_24+=0.668048*layer_1_1;
layer_2_24+=-0.827071*layer_1_2;
layer_2_24+=-0.981216*layer_1_3;
layer_2_24+=-0.654596*layer_1_4;
layer_2_24+=0.543467*layer_1_5;
layer_2_24+=0.502791*layer_1_6;
layer_2_24+=0.492911*layer_1_7;
layer_2_24+=0.235201*layer_1_8;
layer_2_24+=-0.472634*layer_1_9;
layer_2_24+=0.48936*layer_1_10;
layer_2_24+=0.82957*layer_1_11;
layer_2_24+=0.622726*layer_1_12;
layer_2_24+=-0.561795*layer_1_13;
layer_2_24+=-0.119077*layer_1_14;
layer_2_24+=-1.03939*layer_1_15;
layer_2_24+=-0.914534*layer_1_16;
layer_2_24+=-0.959636*layer_1_17;
layer_2_24+=-0.39959*layer_1_18;
layer_2_24+=0.364059*layer_1_19;
layer_2_24+=-0.251664*layer_1_20;
layer_2_24+=-0.674663*layer_1_21;
layer_2_24+=-0.463208*layer_1_22;
layer_2_24+=-0.661157*layer_1_23;
layer_2_24+=0.399846*layer_1_24;
layer_2_24+=-0.739858*layer_1_25;
layer_2_24+=-0.936926*layer_1_26;
layer_2_24+=0.0187605*layer_1_27;
layer_2_24+=-0.400671*layer_1_28;
layer_2_24+=0.573122*layer_1_29;
layer_2_24+=-0.682363*layer_1_30;
layer_2_24=1/(1+exp(-(layer_2_24)));
layer_2_25=0;
layer_2_25+=1.02733*layer_1_0;
layer_2_25+=-0.432963*layer_1_1;
layer_2_25+=-1.06092*layer_1_2;
layer_2_25+=-1.28413*layer_1_3;
layer_2_25+=0.744852*layer_1_4;
layer_2_25+=-0.517336*layer_1_5;
layer_2_25+=0.179131*layer_1_6;
layer_2_25+=-0.331542*layer_1_7;
layer_2_25+=0.151094*layer_1_8;
layer_2_25+=0.280497*layer_1_9;
layer_2_25+=0.874582*layer_1_10;
layer_2_25+=0.791418*layer_1_11;
layer_2_25+=0.852567*layer_1_12;
layer_2_25+=-1.16915*layer_1_13;
layer_2_25+=-0.765371*layer_1_14;
layer_2_25+=0.12321*layer_1_15;
layer_2_25+=0.28119*layer_1_16;
layer_2_25+=0.669197*layer_1_17;
layer_2_25+=-0.995445*layer_1_18;
layer_2_25+=0.749835*layer_1_19;
layer_2_25+=0.591994*layer_1_20;
layer_2_25+=-0.303627*layer_1_21;
layer_2_25+=0.130138*layer_1_22;
layer_2_25+=0.177031*layer_1_23;
layer_2_25+=-0.194654*layer_1_24;
layer_2_25+=-0.440681*layer_1_25;
layer_2_25+=0.701562*layer_1_26;
layer_2_25+=0.547394*layer_1_27;
layer_2_25+=0.403101*layer_1_28;
layer_2_25+=0.194249*layer_1_29;
layer_2_25+=-0.455245*layer_1_30;
layer_2_25=1/(1+exp(-(layer_2_25)));
layer_2_26=0;
layer_2_26+=-0.835458*layer_1_0;
layer_2_26+=-0.649357*layer_1_1;
layer_2_26+=0.101744*layer_1_2;
layer_2_26+=-0.208622*layer_1_3;
layer_2_26+=-0.44183*layer_1_4;
layer_2_26+=-0.650115*layer_1_5;
layer_2_26+=-0.145918*layer_1_6;
layer_2_26+=0.29788*layer_1_7;
layer_2_26+=0.766618*layer_1_8;
layer_2_26+=0.246704*layer_1_9;
layer_2_26+=0.901273*layer_1_10;
layer_2_26+=-0.568289*layer_1_11;
layer_2_26+=-0.102184*layer_1_12;
layer_2_26+=-0.68736*layer_1_13;
layer_2_26+=0.627849*layer_1_14;
layer_2_26+=-0.120533*layer_1_15;
layer_2_26+=-0.530001*layer_1_16;
layer_2_26+=0.0239316*layer_1_17;
layer_2_26+=-0.0169081*layer_1_18;
layer_2_26+=-0.420897*layer_1_19;
layer_2_26+=-0.384997*layer_1_20;
layer_2_26+=-0.700083*layer_1_21;
layer_2_26+=-0.526396*layer_1_22;
layer_2_26+=-0.649162*layer_1_23;
layer_2_26+=0.730105*layer_1_24;
layer_2_26+=0.466527*layer_1_25;
layer_2_26+=0.469449*layer_1_26;
layer_2_26+=0.168041*layer_1_27;
layer_2_26+=0.224673*layer_1_28;
layer_2_26+=-0.510272*layer_1_29;
layer_2_26+=0.533738*layer_1_30;
layer_2_26=1/(1+exp(-(layer_2_26)));
layer_2_27=0;
layer_2_27+=-1.16619*layer_1_0;
layer_2_27+=0.177952*layer_1_1;
layer_2_27+=0.517933*layer_1_2;
layer_2_27+=-0.16424*layer_1_3;
layer_2_27+=-0.939342*layer_1_4;
layer_2_27+=-0.245831*layer_1_5;
layer_2_27+=-1.0258*layer_1_6;
layer_2_27+=0.580567*layer_1_7;
layer_2_27+=0.0443995*layer_1_8;
layer_2_27+=-0.119215*layer_1_9;
layer_2_27+=0.00759572*layer_1_10;
layer_2_27+=0.110932*layer_1_11;
layer_2_27+=0.409623*layer_1_12;
layer_2_27+=0.344063*layer_1_13;
layer_2_27+=0.164428*layer_1_14;
layer_2_27+=0.469067*layer_1_15;
layer_2_27+=0.601382*layer_1_16;
layer_2_27+=-0.696018*layer_1_17;
layer_2_27+=-0.417989*layer_1_18;
layer_2_27+=0.438928*layer_1_19;
layer_2_27+=-1.05873*layer_1_20;
layer_2_27+=-0.202474*layer_1_21;
layer_2_27+=-1.10229*layer_1_22;
layer_2_27+=-0.0207517*layer_1_23;
layer_2_27+=-0.743669*layer_1_24;
layer_2_27+=-0.895197*layer_1_25;
layer_2_27+=-0.607064*layer_1_26;
layer_2_27+=1.00783*layer_1_27;
layer_2_27+=-0.259*layer_1_28;
layer_2_27+=0.148694*layer_1_29;
layer_2_27+=-0.857967*layer_1_30;
layer_2_27=1/(1+exp(-(layer_2_27)));
layer_2_28=0;
layer_2_28+=-0.34478*layer_1_0;
layer_2_28+=0.90814*layer_1_1;
layer_2_28+=0.554326*layer_1_2;
layer_2_28+=-0.578955*layer_1_3;
layer_2_28+=-0.590016*layer_1_4;
layer_2_28+=-0.567342*layer_1_5;
layer_2_28+=-0.921323*layer_1_6;
layer_2_28+=0.931126*layer_1_7;
layer_2_28+=-0.707398*layer_1_8;
layer_2_28+=-0.952498*layer_1_9;
layer_2_28+=-0.622096*layer_1_10;
layer_2_28+=-0.448544*layer_1_11;
layer_2_28+=0.459584*layer_1_12;
layer_2_28+=0.113574*layer_1_13;
layer_2_28+=-1.0621*layer_1_14;
layer_2_28+=-0.510879*layer_1_15;
layer_2_28+=-0.943769*layer_1_16;
layer_2_28+=-0.605881*layer_1_17;
layer_2_28+=-0.0907685*layer_1_18;
layer_2_28+=-0.677757*layer_1_19;
layer_2_28+=0.2186*layer_1_20;
layer_2_28+=-0.807424*layer_1_21;
layer_2_28+=-0.14074*layer_1_22;
layer_2_28+=0.397111*layer_1_23;
layer_2_28+=-0.40901*layer_1_24;
layer_2_28+=-0.898136*layer_1_25;
layer_2_28+=-0.586461*layer_1_26;
layer_2_28+=0.199429*layer_1_27;
layer_2_28+=0.597332*layer_1_28;
layer_2_28+=0.105863*layer_1_29;
layer_2_28+=0.736991*layer_1_30;
layer_2_28=1/(1+exp(-(layer_2_28)));
layer_2_29=0;
layer_2_29+=-1.74746*layer_1_0;
layer_2_29+=-0.146001*layer_1_1;
layer_2_29+=0.578355*layer_1_2;
layer_2_29+=0.56121*layer_1_3;
layer_2_29+=-0.430909*layer_1_4;
layer_2_29+=0.13163*layer_1_5;
layer_2_29+=-0.648231*layer_1_6;
layer_2_29+=-0.893392*layer_1_7;
layer_2_29+=0.32629*layer_1_8;
layer_2_29+=-0.770371*layer_1_9;
layer_2_29+=-1.83438*layer_1_10;
layer_2_29+=-0.618451*layer_1_11;
layer_2_29+=-0.601357*layer_1_12;
layer_2_29+=-0.0958015*layer_1_13;
layer_2_29+=0.45208*layer_1_14;
layer_2_29+=-1.20554*layer_1_15;
layer_2_29+=0.874736*layer_1_16;
layer_2_29+=-0.28321*layer_1_17;
layer_2_29+=0.466214*layer_1_18;
layer_2_29+=-0.933669*layer_1_19;
layer_2_29+=-1.26324*layer_1_20;
layer_2_29+=0.114213*layer_1_21;
layer_2_29+=-0.579337*layer_1_22;
layer_2_29+=-0.262996*layer_1_23;
layer_2_29+=-0.30722*layer_1_24;
layer_2_29+=0.897503*layer_1_25;
layer_2_29+=-0.500194*layer_1_26;
layer_2_29+=0.83138*layer_1_27;
layer_2_29+=-0.519296*layer_1_28;
layer_2_29+=0.694689*layer_1_29;
layer_2_29+=0.330241*layer_1_30;
layer_2_29=1/(1+exp(-(layer_2_29)));
layer_2_30=1;
layer_3_0=0;
layer_3_0+=-0.545364*layer_2_0;
layer_3_0+=-0.354888*layer_2_1;
layer_3_0+=-0.428231*layer_2_2;
layer_3_0+=-0.454038*layer_2_3;
layer_3_0+=-0.405722*layer_2_4;
layer_3_0+=-0.956469*layer_2_5;
layer_3_0+=-0.550689*layer_2_6;
layer_3_0+=-0.799677*layer_2_7;
layer_3_0+=0.390093*layer_2_8;
layer_3_0+=0.323008*layer_2_9;
layer_3_0+=0.58499*layer_2_10;
layer_3_0+=0.416081*layer_2_11;
layer_3_0+=-1.23411*layer_2_12;
layer_3_0+=0.330897*layer_2_13;
layer_3_0+=-0.162244*layer_2_14;
layer_3_0+=1.17213*layer_2_15;
layer_3_0+=-0.301636*layer_2_16;
layer_3_0+=0.923414*layer_2_17;
layer_3_0+=0.500936*layer_2_18;
layer_3_0+=0.147564*layer_2_19;
layer_3_0+=0.60469*layer_2_20;
layer_3_0+=0.533561*layer_2_21;
layer_3_0+=-0.177414*layer_2_22;
layer_3_0+=-0.205623*layer_2_23;
layer_3_0+=0.205566*layer_2_24;
layer_3_0+=-0.640817*layer_2_25;
layer_3_0+=0.0048945*layer_2_26;
layer_3_0+=0.700967*layer_2_27;
layer_3_0+=0.172615*layer_2_28;
layer_3_0+=1.48897*layer_2_29;
layer_3_0+=-0.796136*layer_2_30;
layer_3_0=1/(1+exp(-(layer_3_0)));
layer_3_1=1;
output0=layer_3_0;
Plot(Output0 * 100, _DEFAULT_NAME(), ParamColor( "Color2", colorCycle ), ParamStyle("Style") );
Plot(70, _DEFAULT_NAME(), colorWhite, styleDashed);
Plot(30, _DEFAULT_NAME(), colorWhite, styleDashed);
_SECTION_END();
_SECTION_BEGIN("RSI");
SetChartOptions(0,0,chartGrid30|chartGrid70);
periods = Param( "Periods", 15, 1, 200, 1 );
Plot( RSI( periods), _DEFAULT_NAME(), ParamColor( "Color", colorCycle ), ParamStyle("Style") );
_SECTION_END();
Thursday, 18 October 2018
Multi-level of CCI Oscillator
Multi-level of CCI Oscillator to indicate market movements,
Overbought and Oversold Oscillator can be combined with Buy and Sell stop
_SECTION_BEGIN("Multilevel CCI");
SetChartOptions(0,0,chartGrid100|chartGridDiv100);
Period = Param("CCI Period",14,1,100,1);
CCILineColor = ParamColor("CCI Line Color",colorDarkGreen);
CCIOverboughtColor = ParamColor("CCI Overbought Color", colordarkGreen);
CCIOversoldColor = ParamColor("CCI Oversold Color", colorBrown);
CCIAboveZeroColor = ParamColor("CCI Above Zero Color", colorBrightGreen);
CCIBelowZeroColor = ParamColor("CCI Below Zero Color", colorRed);
z = CCI(Period);
Plot(z,"CCI",IIf(z<-100,CCIOversoldColor,IIf(z>100,CCIOverboughtColor,CCILineColor)),styleNoLabel);
Plot(200,"200",CCILineColor,styleNoTitle|styleNoLabel);
Plot(100,"100",CCILineColor,styleNoTitle|styleNoLabel);
Plot(0,"0",CCILineColor,styleNoTitle|styleNoLabel);
Plot(-100,"-100",CCILineColor,styleNoTitle|styleNoLabel);
Plot(-200,"-200",CCILineColor,styleNoTitle|styleNoLabel);
PlotOHLC(z,z,45,z,"",IIf(z>45,CCIOverboughtColor,CCIOversoldcolor),styleCloud|styleClipMinMax|styleNoLabel,-100,100);
PlotOHLC(z,z,0,z,"",IIf(z>=0,CCIAboveZeroColor,CCIBelowZeroColor),styleCloud|styleNoLabel);
_SECTION_END();
Volume Based Intraday AFl
Volume based intraday trading strategy, suitable for algo traders. Buy and Sell conditions are based on previous day Volume. Trigger price, start Time, end time, stop loss and target has been added.
SetPositionSize(1, spsShares);
SetBarsRequired(sbrAll, sbrAll);
SetChartOptions(0,chartShowArrows|chartShowDates);
SetChartBkGradientFill(colorBlack,colorBlack,colorBlack);
SetBarFillColor(IIf(C>O,colorPaleBlue,IIf(C<=O,colorOrange,colorLightGrey)));
Plot(C,"\nPrice",IIf(C>O,colorPaleBlue,IIf(C<=O,colorOrange,colorLightGrey)),64|styleNoTitle,0,0,0,0);
GraphXSpace = 10;
// Time Given for MCX You can Change this
StartTime = ParamTime("Start Time", "10:00:00");
StopTime = ParamTime("End Time", "23:00:00");
Target = Param("Target %", 1, 0.1, 50, 0.01)/100;
StopLoss = Param("Stop Loss %", 0.6, 0.1, 50, 0.01)/100;
DCAL = DateNum();
HCAL = 0;
HCALPrice = 0;
LCALPrice = 0;
CurDNPrice = 0;
FirDNDNPrice = DCAL[0];
TN = TimeNum();
DT = DateTime();
LDT = DT[BarCount-1];
VOLPRICECAL = Null;
VOLLOWPRICECAL = Null;
HIGPRCCALC = Null;
LOWPRCCALC = Null;
PrevDay = 0;
for(i = 1; i < BarCount; i++)
{
if(CurDNPrice != DCAL[i] && FirDNDNPrice != DCAL[i])
{
VOLPRICECAL = HCALPrice;
VOLLOWPRICECAL = LCALPrice;
CurDNPrice = DCAL[i];
HCAL = 0;
HCALPrice = 0;
LCALPrice = 0;
HIGPRCCALC[i-1] = Null;
LOWPRCCALC[i-1] = Null;
}
HIGPRCCALC[i] = VOLPRICECAL;
LOWPRCCALC[i] = VOLLOWPRICECAL;
if(HCAL < Volume[i])
{
HCAL = Volume[i];
HCALPrice = High[i];
LCALPrice = Low[i];
}
}
Plot(HIGPRCCALC, "Prev High", colorGrey50, styleStaircase|styleDashed);
Plot(LOWPRCCALC, "Prev Low", colorGrey50, styleStaircase|styleDashed);
Buy = Ref(Close > HIGPRCCALC, -1) AND TN > StartTime AND TN < StopTime AND TN > Ref(TN, -1);
Short = Ref(Close < LOWPRCCALC, -1) AND TN > StartTime AND TN < StopTime AND TN > Ref(TN, -1);
Sell = Ref(Close < LOWPRCCALC, -1) OR TN >= StopTime;
Cover = Ref(Close > HIGPRCCALC, -1) OR TN >= StopTime;
Buy = ExRem(Buy, Sell);
Sell = ExRem(Sell, Buy);
Short = ExRem(Short, Cover);
Cover = ExRem(Cover, Short);
BuyPrice = ValueWhen(Buy, Open);
ShortPrice = ValueWhen(Short, Open);
SellPrice = ValueWhen(Sell, Open);
CoverPrice = ValueWhen(Cover, Open);
LongTargetPrice = BuyPrice + (BuyPrice * Target);
ShortTargetPrice = ShortPrice - (ShortPrice * Target);
LongSLPrice = BuyPrice - (BuyPrice * Target);
ShortSLPrice = ShortPrice + (ShortPrice * Target);
Sell1 = High > LongTargetPrice;
Sell2 = Low < LongSLPrice;
Cover1 = Low < ShortTargetPrice;
Cover2 = High > ShortSLPrice;
Sell = Sell OR Sell1 OR Sell2;
Cover = Cover OR Cover1 OR Cover2;
SellPrice = IIf(Sell1, LongTargetPrice, IIf(Sell2, LongSLPrice, SellPrice));
CoverPrice = IIf(Cover1, ShortTargetPrice, IIf(Cover2, ShortSLPrice, CoverPrice));
Buy = ExRem(Buy, Sell);
Sell = ExRem(Sell, Buy);
Short = ExRem(Short, Cover);
Cover = ExRem(Cover, Short);
BuyPlotsCandles = (BarsSince(Buy)<BarsSince(Sell)) AND (BarsSince(Buy)!=0);
ShortPlotCandles = (BarsSince(Cover)>BarsSince(Short)) AND (BarsSince(Short)!=0);
Plot(IIf(BuyPlotsCandles, BuyPrice, Null), "Buy Price", colorYellow, styleStaircase|styleDashed);
Plot(IIf(BuyPlotsCandles, LongTargetPrice, Null), "Long Target", colorBrightGreen, styleStaircase|styleDashed);
Plot(IIf(BuyPlotsCandles, LongSLPrice, Null), "Long Target", colorCustom12, styleStaircase|styleDashed);
Plot(IIf(ShortPlotCandles, ShortPrice, Null), "Short Price", colorYellow, styleStaircase|styleDashed);
Plot(IIf(ShortPlotCandles, ShortTargetPrice, Null), "Short Target", colorBrightGreen, styleStaircase|styleDashed);
Plot(IIf(ShortPlotCandles, ShortSLPrice, Null), "Short Target", colorCustom12, styleStaircase|styleDashed);
Buyshape = Buy * shapeUpArrow;
SellShape = Sell * shapeStar;
PlotShapes( Buyshape, colorBrightGreen, 0, Low );
PlotShapes( SellShape, colorRed, 0, High );
Shortshape = Short * shapeDownArrow;
CoverShape = Cover * shapeStar;
PlotShapes( Shortshape, colorOrange, 0, High, -30);
PlotShapes( CoverShape, colorTurquoise, 0, Low, -30 );
Amibroker (AFL) - Night Star
Gives good result on 5 mins time frame and above.
developed by:Amibrokerfans
_SECTION_BEGIN("Chart Settings");
SetChartOptions(0,chartShowArrows|chartShowDates);
SetChartBkColor(ParamColor("Outer Panel",colorPaleBlue));
SetChartBkGradientFill(ParamColor("Upper Chart",1),ParamColor("Lower Chart",23));
GraphXSpace=Param("GraphXSpace",10,0,100,1);
dec = (Param("Decimals",2,0,7,1)/10)+1;
bi = BarIndex();
Lbi = LastValue(BarIndex());
sbi = SelectedValue(bi);
x1= BarCount-1;
_SECTION_END();
_SECTION_BEGIN("HeikenAshiSmoothed");
GraphXSpace=5;
p=6;
Om=MA(O,p);
hm=MA(H,p);
lm=MA(L,p);
Cm=MA(C,p);
HACLOSE=(Om+Hm+Lm+Cm)/4;
HaOpen = AMA( Ref( HaClose, -1 ), 0.5 );
HaHigh = Max( Hm, Max( HaClose, HaOpen ) );
HaLow = Min( Lm, Min( HaClose, HaOpen ) );
PlotOHLC( HaOpen, HaHigh, HaLow, HaClose, "" + Name(), colorBlack, styleCandle | styleNoLabel );
_SECTION_END();
_SECTION_BEGIN("theswing");
SetBarsRequired(200,0);
GraphXSpace = 5;
SetChartOptions(0,chartShowArrows|chartShowDates);
a = 2;
b= 20;
HACLOSE=(O+H+L+C)/4;
HaOpen = AMA( Ref( HaClose, -1 ), 0.5 );
HaHigh = Max( H, Max( HaClose, HaOpen ) );
HaLow = Min( L, Min( HaClose, HaOpen ) );
d=Haclose;
e=ATR(14);
g = WMA(H-L,b);
k = a * g;
m = 1;
n[0] = 0;
for(i = 1; i < BarCount; i++)
{
if(m[i-1] == 1)
{
if(d[i] < n[i-1])
{
m[i] = -1;
n[i] = d[i] + k[i];
}
else
{
m[i] = 1;
if((d[i] - k[i]) > n[i-1])
{
n[i] = d[i] - k[i];
}
else
{
n[i] = n[i-1];
}
}
}
if(m[i-1] == -1)
{
if(d[i] > n[i-1])
{
m[i] = 1;
n[i] = d[i] - k[i];
}
else
{
m[i] = -1;
if((d[i] + k[i]) < n[i-1])
{
n[i] = d[i] + k[i];
}
else
{
n[i] = n[i-1];
}
}
}
}
Buy=Cover=Cross(d,n);
Sell=Short=Cross(n,d);
SellPrice=ValueWhen(Sell,C,1);
BuyPrice=ValueWhen(Buy,C,1);
Long=Flip(Buy,Sell);
Shrt=Flip(Sell,Buy );
_SECTION_END();
_SECTION_BEGIN("Title");
z = (GetPerformanceCounter()/200)%255;
anim=ColorHSB( ( i + z ) % 256, 155, 250 );
RequestTimedRefresh(1);
if( Status("action") == actionIndicator )
(
Title = EncodeColor(colorWhite) + Name() + " - " + EncodeColor(colorRed)+ Interval(2) + EncodeColor(colorWhite) +
" - " + Date() +" - "+"\n" +EncodeColor(colorWhite) +"Op-"+O+" "+"Hi-"+H+" "+"Lo-"+L+" "+
"Cl-"+C+" "+ "Vol= "+ WriteVal(V)+"\n"+
EncodeColor(colorRed)+
WriteIf (Buy , " GO LONG / Reverse Signal at "+C+" ","")+
WriteIf (Sell , " EXIT LONG / Reverse Signal at "+C+" ","")+"\n"+EncodeColor(colorWhite)+
WriteIf(Sell , "Total Profit/Loss for the Last Trade $."+(C-BuyPrice)+"","")+
WriteIf(Buy , "Total Profit/Loss for the Last trade $."+(SellPrice-C)+"","")+
WriteIf(Long AND NOT Buy, "Trade : Long - Entry price $."+(BuyPrice),"")+
WriteIf(shrt AND NOT Sell, "Trade : Short - Entry price $."+(SellPrice),"")+"\n"+
WriteIf(Long AND NOT Buy, "Current Profit/Loss $."+(C-BuyPrice)+"","")+
WriteIf(shrt AND NOT Sell, "Current Profit/Loss $."+(SellPrice-C)+"",""));
PlotShapes(IIf(Buy, shapeStar, shapeNone),colorCustom11,layer = 0, HaLow,offset = -80);
PlotShapes(IIf(Buy, shapeSmallCircle, shapeNone),colorBlue,layer = 0,HaLow,offset = -80);
PlotShapes(IIf(Buy, shapeUpArrow, shapeNone),anim,layer = 0,HaLow,offset = -63);
PlotShapes(IIf(Buy, shapeSquare, shapeNone),colorCustom11,layer = 0,HaLow,offset = -71);
PlotShapes(IIf(Sell, shapeStar, shapeNone),colorYellow,layer = 0, HaHigh,offset = 80);
PlotShapes(IIf(Sell, shapeSmallCircle, shapeNone),colorRed,layer = 0,HaHigh,offset = 80);
PlotShapes(IIf(Sell, shapeDownArrow, shapeNone),anim,layer = 0,HaHigh,offset = -63);
PlotShapes(IIf(Sell, shapeSquare, shapeNone),colorYellow,layer = 0,HaHigh,offset = 71);
Amibroker (AFL) System that gives huge profits. Golden Cross
System that gives huge profits. Golden Cross
_SECTION_BEGIN("BACK COLR");
GfxSetOverlayMode(1);
GfxSetOverlayMode(1);
GfxSelectFont("Tahoma", Status("pxheight")/20 ); /* Up down name*/
GfxSetTextAlign( 6 );// center alignment
GfxSetTextColor( ParamColor("Text Color", ColorHSB( 42, 42, 42 ) ));
GfxSetBkMode(0); // transparent
GfxTextOut( Name(), Status("pxwidth")/2, Status("pxheight")/7);
GfxSelectFont("Tahoma", Status("pxheight")/30 );
GfxTextOut( IndustryID(1), Status("pxwidth")/2, Status("pxheight")/5 ); /* Up Down Sector*/
_SECTION_BEGIN("Price");
SetChartOptions(0,chartShowArrows|chartShowDates);
_N(Title = StrFormat("{{NAME}} - {{INTERVAL}} {{DATE}} Open %g, Hi %g, Lo %g, Close %g (%.1f%%) {{VALUES}}", O, H, L, C, SelectedValue( ROC(C, 1 ) ) ));
Plot( C, "Close", ParamColor("Color", colorBlack ), styleNoTitle | ParamStyle("Style") | GetPriceStyle() );
_SECTION_END();
_SECTION_BEGIN("EMA");
P = ParamField("Price field",-1);
Periods1 = Param("Periods1", 60, 2, 500, 1, 10 );
Periods2 = Param("Periods2", 360, 2, 500, 1, 10 );
Periods3 = Param("Periods3", 180, 2, 500, 1, 10 );
Periods4 = Param("Periods4", 270, 2, 500, 1, 10 );
Periods5 = Param("Periods5", 90, 2, 500, 1, 10 );
Plot( EMA( P, Periods1 ), StrFormat(_SECTION_NAME()+"(%g)", Periods1), ParamColor( "Color1", colorAqua ), ParamStyle("Style") );
Plot( EMA( P, Periods2 ), StrFormat(_SECTION_NAME()+"(%g)", Periods2), ParamColor( "Color2", colorDarkBlue ), ParamStyle("Style") );
Plot( EMA( P, Periods3 ), StrFormat(_SECTION_NAME()+"(%g)", Periods3), ParamColor( "Color3", colorGreen ), ParamStyle("Style") );
Plot( EMA( P, Periods4 ), StrFormat(_SECTION_NAME()+"(%g)", Periods4), ParamColor( "Color4", colorPink ), ParamStyle("Style") );
Plot( EMA( P, Periods5 ), StrFormat(_SECTION_NAME()+"(%g)", Periods5), ParamColor( "Color5", colorYellow ), ParamStyle("Style") );
Buy = Cross( EMA( P, Periods4 ), EMA( P, Periods2 ) );
Sell = Cross(EMA( P,Periods2 ), EMA( P, Periods1 ) );
izleme= Cross(EMA( P,Periods1 ), EMA( P, Periods2 ) );
PlotShapes(IIf(Buy==1, shapeHollowUpArrow , shapeNone), colorGreen, 0,Low, Offset=-30);
PlotShapes(IIf(Sell==1, shapeHollowDownArrow, shapeNone), colorRed, 0,High, Offset=-30);
PlotShapes(IIf(izleme==1, shapeHollowUpArrow, shapeNone), colorBlue, 0,Low, Offset=-30);
COLOR=IIf(Buy,colorLime,IIf(Sell,colorRed,colorWhite));
Plot(C,"",COLOR,styleCandle|styleThick);
PlotShapes( IIf( Buy, shapeUpTriangle, shapeNone ), colorGreen, layer = 0,yposition = L, offset = 70);
PlotShapes( IIf( Sell, shapeDownTriangle, shapeNone ), colorRed, layer = 0, yposition =H, offset = 70);
PlotShapes( IIf( izleme, shapeUpTriangle, shapeNone ), colorYellow, layer = 0, yposition =H, offset = 80);
PlotOHLC( Null,EMA( P, Periods4 ),EMA( P, Periods2 ),Null, "", IIf(EMA( P, Periods4 )>EMA( P, Periods2 ) ,colorGreen,colorWhite), styleCloud);
PlotOHLC( Null,EMA( P, Periods2 ),EMA( P, Periods1 ),Null, "", IIf(EMA( P, Periods2 )<EMA( P, Periods1 ) ,colorBlue,colorRed), styleCloud);
Color = IIf( EMA(p,periods1) > EMA(p,periods2) , colorLime, IIf( EMA(p,periods2) > EMA(p,periods1), colorPink, colorGrey40 ));
Plot( 2, "", Color, styleArea | styleOwnScale | styleNoLabel, -0.1, 30 );
_SECTION_END();
Wednesday, 17 October 2018
১৭-১০-২০১৮ এখন স্টক মার্কেট হবে আপনার হাতের মুঠোয় - বিশ্বাস হচ্ছে না ? একবার বিশ্বাস করেই দেখেন
এখন স্টক মার্কেট হবে আপনার হাতের মুঠোয় - বিশ্বাস হচ্ছে না ? একবার বিশ্বাস করেই দেখেন
আমাদের স্টক মার্কেটে লিস্টেড কোম্পানির দিন কে দিন বেরেই চলছে , তাই সকল শেয়ারের খোজ খাবর নেওয়ার সুযোগ আস্তে আস্তে কষ্টকর হতে শুরু করেছে, আর তাই যদি এমন হয় যে আপনি সব কিছুর ই ভাল কিছু হাতের নাগালে পেতেন তাহলে মন্দ হত না , বিশেষ করে আপনার তাখন হাতে গোনা কয়েকটা শেয়ারের মুভমেন্ট , মার্কেট নিউজ, সাপোর্ট , রেজিস্টেন্স , আরএসআই , এমএফআই ইত্যাদি বিবেচনায় রাখলেই আপনি আপনার বিজনেস অনেক সহজ করে নিতে পারবেন।
Market Pulse যেখানে আপনি জানতে পারবেন যে সকল শেয়ার নতুন করে যাত্রা শুরু করতে চাইছে।
মার্কেট লিডিং স্টক সমূহের জনপ্রিয় টেকনিক্যাল ইনডিকেটর এর অবস্থান ।
Pivot Table only Opportunity Stock
NB: উপরের লিঙ্ক গুলিতে ল্কিক করলে বিস্তারিত জানতে ও দেখতে পারবেন , পিডিএফ ফাইলে।
আমাদের স্টক মার্কেটে লিস্টেড কোম্পানির দিন কে দিন বেরেই চলছে , তাই সকল শেয়ারের খোজ খাবর নেওয়ার সুযোগ আস্তে আস্তে কষ্টকর হতে শুরু করেছে, আর তাই যদি এমন হয় যে আপনি সব কিছুর ই ভাল কিছু হাতের নাগালে পেতেন তাহলে মন্দ হত না , বিশেষ করে আপনার তাখন হাতে গোনা কয়েকটা শেয়ারের মুভমেন্ট , মার্কেট নিউজ, সাপোর্ট , রেজিস্টেন্স , আরএসআই , এমএফআই ইত্যাদি বিবেচনায় রাখলেই আপনি আপনার বিজনেস অনেক সহজ করে নিতে পারবেন।
Market Pulse যেখানে আপনি জানতে পারবেন যে সকল শেয়ার নতুন করে যাত্রা শুরু করতে চাইছে।
মার্কেট লিডিং স্টক সমূহের জনপ্রিয় টেকনিক্যাল ইনডিকেটর এর অবস্থান ।
Pivot Table only Opportunity Stock
NB: উপরের লিঙ্ক গুলিতে ল্কিক করলে বিস্তারিত জানতে ও দেখতে পারবেন , পিডিএফ ফাইলে।
Sunday, 14 October 2018
১৬-১০-২০১৮ এখন স্টক মার্কেট হবে আপনার হাতের মুঠোয় - বিশ্বাস হচ্ছে না ? একবার বিশ্বাস করেই দেখেন
এখন স্টক মার্কেট হবে আপনার হাতের মুঠোয় - বিশ্বাস হচ্ছে না ? একবার বিশ্বাস করেই দেখেন
আমাদের স্টক মার্কেটে লিস্টেড কোম্পানির দিন কে দিন বেরেই চলছে , তাই সকল শেয়ারের খোজ খাবর নেওয়ার সুযোগ আস্তে আস্তে কষ্টকর হতে শুরু করেছে, আর তাই যদি এমন হয় যে আপনি সব কিছুর ই ভাল কিছু হাতের নাগালে পেতেন তাহলে মন্দ হত না , বিশেষ করে আপনার তাখন হাতে গোনা কয়েকটা শেয়ারের মুভমেন্ট , মার্কেট নিউজ, সাপোর্ট , রেজিস্টেন্স , আরএসআই , এমএফআই ইত্যাদি বিবেচনায় রাখলেই আপনি আপনার বিজনেস অনেক সহজ করে নিতে পারবেন।
Market Pulse যেখানে আপনি জানতে পারবেন যে সকল শেয়ার নতুন করে যাত্রা শুরু করতে চাইছে।
মার্কেট লিডিং স্টক সমূহের জনপ্রিয় টেকনিক্যাল ইনডিকেটর এর অবস্থান ।
Pivot Table only Opportunity Stock
NB: উপরের লিঙ্ক গুলিতে ল্কিক করলে বিস্তারিত জানতে ও দেখতে পারবেন , পিডিএফ ফাইলে।
আমাদের স্টক মার্কেটে লিস্টেড কোম্পানির দিন কে দিন বেরেই চলছে , তাই সকল শেয়ারের খোজ খাবর নেওয়ার সুযোগ আস্তে আস্তে কষ্টকর হতে শুরু করেছে, আর তাই যদি এমন হয় যে আপনি সব কিছুর ই ভাল কিছু হাতের নাগালে পেতেন তাহলে মন্দ হত না , বিশেষ করে আপনার তাখন হাতে গোনা কয়েকটা শেয়ারের মুভমেন্ট , মার্কেট নিউজ, সাপোর্ট , রেজিস্টেন্স , আরএসআই , এমএফআই ইত্যাদি বিবেচনায় রাখলেই আপনি আপনার বিজনেস অনেক সহজ করে নিতে পারবেন।
Market Pulse যেখানে আপনি জানতে পারবেন যে সকল শেয়ার নতুন করে যাত্রা শুরু করতে চাইছে।
মার্কেট লিডিং স্টক সমূহের জনপ্রিয় টেকনিক্যাল ইনডিকেটর এর অবস্থান ।
Pivot Table only Opportunity Stock
NB: উপরের লিঙ্ক গুলিতে ল্কিক করলে বিস্তারিত জানতে ও দেখতে পারবেন , পিডিএফ ফাইলে।
Saturday, 13 October 2018
ইনডেক্স নেক্সট মান্থ কেমন হতে পারে
লাস্ট ডে মার্কেট পর্যালোচনায় দেখা গেছে দিন শেষে ইনডেক্স ১.১৩ পয়েন্ট কমে ৫৪৩৫ পয়েন্ট এ ক্লোজ হয়েছে। সাথে কমেছে মার্কেট নেগেটিভ হওয়ার প্রবণতা , কারন বুধ বারে ইনডেক্স কমেছিল ১৯.৬৫ পয়েন্ট সাথে বাজারে লেনদেন হয়েছিল ৮০১ কোটি টাকা। মার্কেট নেগেটিভ হওয়ার সাথে অনেক বড় লেনদেন হওয়া, এতে করে অনেকেই মনে করেছিলেন যে মার্কেট অনেক বেশী ফল করবে নেক্সট ডে। কিন্তু ১ দিনের ব্যবধানে ইনডেক্স অর্থাৎ পরবর্তী দিনে এসে মিলেছে অন্নচিত্র ,ইনডেক্স কমেছে মাত্র ১.১৩ পয়েন্ট এবং লেনদেন ১৫৬ কোটি টাকা কমে হয়েছে ৬৪৪.৯৮ কোটি টাকা ।
কিন্তু ইনডেক্স এ নেগেটিভ ইম্প্যক্ট ফেলেছে যে সকল শেয়ার তাদের মধ্যে অন্যতম ইউনাইটেড পাওয়ার , স্কয়ার ফার্মা ,অলিম্পিক , বিএটিবিসি , কেপিসিএল , মুন্নু সিরামিক , এসিআই ,ইফাদ আটো ।
ইউনাইটেড পাওয়ার – এর কারনে ইনডেক্স কমেছে ৭.৫৭ পয়েন্ট ।
স্কয়ার ফার্মা – এর কারনে ইনডেক্স কমেছে ৭.০০ পয়েন্ট ।
অলিম্পিক – এর কারনে ইনডেক্স কমেছে ৫.৩৬ পয়েন্ট ।
বিএটিবিসি – এর কারনে ইনডেক্স কমেছে ৩.০৬ পয়েন্ট ।
কেপিসিএল – এর কারনে ইনডেক্স কমেছে ২.৩৬ পয়েন্ট ।
মুন্নু সিরামিক – এর কারনে ইনডেক্স কমেছে ১.৩৪ পয়েন্ট ।
এসিআই – এর কারনে ইনডেক্স কমেছে ০.৮৫ পয়েন্ট ।
ইফাদ আটো – এর কারনে ইনডেক্স কমেছে ০.৭৭ পয়েন্ট ।
এসিআই – এর কারনে ইনডেক্স কমেছে ৩.০৬ পয়েন্ট ।
এই ৮ টি ষ্টক এর দর পতনের কারনেই ইনডেক্সে নেগেটিভ ইম্প্যক্ট পরেছে ২৮.৩২ পয়েন্টের ।
অপরদিকে ইনডেক্সত পজেটিভ রাখার ভুমিকাতে যে সকল স্টক অগ্রাধিকার পেয়েছে তারা হচ্ছে , আইসিবি , জিপি , ব্র্যাক ব্যাংক, সামিট পাওয়ার, বেক্সিমক লিঃ, ন্যাশনাল লাইফ ইনস্যুরেন্স , ম্যারিকো, ইউনিক হোটেল ।
আইসিবি – এর কারনে ইনডেক্স বেড়েছে ৪.১৪ পয়েন্ট ।
জিপি – এর কারনে ইনডেক্স বেড়েছে ৪.০০ পয়েন্ট ।
ব্র্যাক ব্যাংক – এর কারনে ইনডেক্স বেড়েছে ২.৪৬ পয়েন্ট ।
সামিট পাওয়ার – এর কারনে ইনডেক্স বেড়েছে ১.৯২ পয়েন্ট ।
বেক্সিমক লিঃ – এর কারনে ইনডেক্স বেড়েছে ১.৯১ পয়েন্ট ।
ন্যাশনাল লাইফ ইনস্যুরেন্স – এর কারনে ইনডেক্স বেড়েছে ১.৫১ পয়েন্ট ।
ম্যারিকো – এর কারনে ইনডেক্স বেড়েছে ১.৩২ পয়েন্ট ।
ইউনিক হোটেল – এর কারনে ইনডেক্স বেড়েছে ০.৯৬ পয়েন্ট ।
এই ৮ টি ষ্টক এর দর বৃদ্ধির কারনে ইনডেক্সে পজেটিভ ইম্প্যক্ট পরেছে ১৮.২১ পয়েন্টের।
-মার্কেট ডেল্টা
ইনডেক্স নেক্সট মান্থ কেমন হতে পারে তার একটা মতামত আপনাদের থেকে জানতে চেয়েছিলাম কিন্তু আপনারা আপনাদের মতামত অনেকেই না দিয়ে নিজেকে সরিয়ে রেখেছেন , এতে হয়তো আপনি ভাবছেন আপনার মতামত যদি সঠিক না হয় , তাতে আপনি নিজেকে লজ্জিত মনে করবেন , কিন্তু সেটা আসলে কোন ব্যপার ই না , আপনাদের মতামত সঠিক হতেও হবে এমন কোন কথা না । সঠিক হতেই পারে আবার না ও হতেই পারে । কিন্তু মতামত দেওয়াটা আসলে আপনাদের নিজেস্য ব্যপার । তাই আপনাদের আমি যোর করতে পারি না ।
ব্যপার না , আপনারা যারা আপনাদের মতামত দিয়েছেন তারা অবশ্যয় বলবো সাহসী , তারা চ্যালেঞ্জ নিতে ভাল বাসেন , তাদেরকে আমার পক্ষ্য থেকে ধন্যবাদ ।
ইনডেক্স এনালাইসিস এর প্রথম পর্ব ঃ
=======================
এবার আশি আমাদের ব্যপারে , আমি ইনডেক্স নিয়ে ছোট্ট একটু গবেষণা করার চেস্টা করছিলাম এখন ও শেষ করতে পারি নাই , তবে নেক্সট মান্থ ইনডেক্স কোথায় দেখতে চাই তার গন্তব্য পেয়ে গেছি । এই রেজাল্ট টা ই যদি রিপোর্ট আকারে প্রকাশ করতে হয় তাহলে আমাকে এটা নিয়ে এখনও অনেক সময় দিতে হবে , অনেক কাজ কারতে হবে , অনেক ডাটা উপস্থাপন করতে হবে , কিন্তু এটা সময় সাপেক্ষ ব্যপার তাই আমি এখন রিপোর্ট আকারে কাজটা শেষ করতে পারছি না , এজন্য দুঃখিত । তবে সেমি রিপোর্ট করা হচ্ছে, সেখানে চেস্টা করা হচ্ছে কিছু ডাটা উপস্থাপন করার, তবে সেটা হয়ত খালি চোখে দেখা যাবে না , কারন এটা
এনালিটিক্যাল ভিউ । এনালিটিক্যাল পাওয়ার যাদের আছে তারা হয়তো এসব উপস্থাপিত ডাটার বিশদ বিশ্লেষণ বুঝতে পারেন । এটা অনেকটা সিক্রেট ব্যপার তার পর ও আপনাদের সাথে আমি আমার ভিউ শেয়ার করার সিধান্ত নিয়েছি ।
NB: আমার এনালাইসিস ১০০% সঠিক হবে এটা আমি এখনও আশা করি না , তবে আমি নিজেকে সংশোধনের জন্য ই আনাল্যসিস করে থাকি , আর ভুল গুলা নিয়ে পরবর্তীতে তা পুনরায় গবেষণা করে থাকি । আর আমি চ্যালেঞ্জ নিতে ভালবাসি ।
" এখন আশি এই এটা আপনারা যারা কমেন্ট করেছিলেন তাদের ই একমাত্র পাওয়ার কথা ছিল ,যদি তাই হয় তাহলে আপনাদের কিভাবে দিব " অথবা আপনারাই বলেন এখন এটা সবার জন্য ওপেন পোস্ট আকারে দিব কিনা ......।।
ওকে তবে তাই হোক ঃ
ইনডেক্স এনালাইসিস এর দ্বিতীয় পর্ব ঃ
=======================
ইনডেক্স এর এক বছরের হিস্টরিক্যাল ডাটা পর্যবেক্ষণ করার পর তার হাইস্ট পয়েন্ট পাওয়া গিয়েছে ৬৩৬০.২৭ পয়েন্ট , লাস্ট ট্রেডিং ডে বিবেচনায় ইনডেক্স এখন তার হাইস্ট পয়েন্ট থেকে (-১৪.৫৫) % নিচে অবস্থান করছে , অর্থাৎ সে তার এক বছরের হাইস্ট পয়েন্ট থেকে ৯২৫.২৬ পয়েন্ট নিচে অবস্থান করছে । অন্য ভাবে দেখাগেলে কিন্তু এটা ও পাওয়া গেল যে সে কিন্তু ৯২৫.২৬ পয়েন্ট বাড়ার ইস্কপ ও রেখেছে । এবার আশি তার এক বছরের লয়েন্ট পয়েন্ট এর ব্যপারে । তার এক বছরের লয়েন্ট পয়েন্ট ৫২৫৭.৯৪ । লাস্ট ট্রেডিং ডে বিবেচনায় ইনডেক্স তার লো পয়েন্ট থেকে ১৭৭.০৭ পয়েন্ট বৃদ্ধি পেয়ে অর্থাৎ ৩.৩৭ % বেরে ৫৪৩৫.০১ পয়েন্ট এ অবস্থান করছে ।
লাস্ট ট্রেডিং ডে বিবেচনায়
RSI(15) =৪৯.৪৮ এবং
MFI (15) ৪৮.৭৫ মান পাওয়া যায়।
মুভিং অ্যাভারেজ অনুসারে
MA(5) দিনে SELL সিগন্যাল ,
MA(10) দিনে BUY সিগন্যাল,
MA(20) দিনে BUY সিগন্যাল ,
MA(50) দিনে SELL সিগন্যাল ,
MA(100) দিনে BUY সিগন্যাল ,
MA(200) দিনে SELL সিগন্যাল এবং
MA(250) দিনে SELL সিগন্যাল পাওয়া গিয়েছে।
২০১৮ সালের জানুয়ারি মাসে ইনডেক্স নেগেটিভ হয়েছে (-৩.২৮) %
২০১৮ সালের ফেব্রুয়ারি মাসে ইনডেক্স নেগেটিভ হয়েছে (-৩.৮৯) %
২০১৮ সালের মার্চ মাসে ইনডেক্স নেগেটিভ হয়েছে (-৩.৫৭) %
২০১৮ সালের মে মাসে ইনডেক্স নেগেটিভ হয়েছে (-৬.৮৯) %
২০১৮ সালের জুলাই মাসে ইনডেক্স নেগেটিভ হয়েছে (-১.৯০) %
২০১৮ সালের সেপ্টেম্বর মাসে ইনডেক্স নেগেটিভ হয়েছে (-৪.১৪) %
২০১৮ সালের ৬ মাস ইনডেক্স নেগেটিভ আচারন করেছে ,
এখন প্রজুন্ত ইনডেক্স ২০১৮ সালে (-১২.৯৫)% নেগেটিভ হয়েছে ।
২০১৮ সালের ৯ মাসের মধ্যে ৩ মাস পজেটিভ ছিল
২০১৮ সালের এপ্রিল মাসে ইনডেক্স পজেটিভ হয়েছে ২.৫৩ %
২০১৮ সালের জুন মাসে ইনডেক্স পজেটিভ হয়েছে ১.১৫ %
২০১৮ সালের আগস্ট মাসে ইনডেক্স পজেটিভ হয়েছে ৫.৬২ %
রানিং মাস অক্টোবরে এখন প্রজুন্ত ১.২৫% পজেটিভ রয়েছে ।
আশা করছি নভেম্বর মাস ও পজেটিভ ই থাকবে , এবং আমাদের টার্গেট পয়েন্ট এ যেতে নভেম্বর মাসের প্রথম সপ্তাহ ই যথেষ্ট হবে - ইনশাআল্লাহ্ অর্থাৎ ০৮ নভেম্বর ২০১৮ ।
ইনডেক্স এনালাইসিস এর তৃতীয় পর্ব ঃ
=======================
আমরা পেয়ে গেছি নেক্সট মান্থ ইনডেক্স কি হতে পারে , কিন্তু এটা এখন ও আপনাদের জানাই নাই যে আমাদের প্রাথমিক টার্গেট কোথায় হতে পারে , এবার আপনাদের জানানোর পালা ।
আপনারা খুব সহজেই পিডিএফ ফাইল টি ডাউনলড করতে পারবেন
Subscribe to:
Posts (Atom)